
PGDB: A Debugger for MPI Applications

Nikoli Dryden
dryden2@illinois.edu

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

ABSTRACT
As MPI applications scale to larger machines, errors that
had been hidden from testing at smaller scales begin to
manifest themselves. It is therefore necessary to extend de-
buggers to work at these scales, in order for efficient devel-
opment of correct applications to proceed. PGDB is the
Parallel GDB, an open-source debugger for MPI applica-
tions that provides such a capability. It is designed from the
ground up to be a robust debugging environment at scale,
while presenting an interface similar to that of the typical
command-line GDB debugger. Its usage on representative
debugging problems is demonstrated and its scalability on
the Stampede supercomputer is evaluated.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, distributed debugging

General Terms
Design, Performance

Keywords
Debugging, Distributed debugging, Parallel debugging, MPI,
XSEDE

1. INTRODUCTION
As clusters and supercomputers continue to grow in size

with the deployment of petascale machines and the increas-
ing demands of applications, we face the challenge of ensur-
ing that these programs continue to operate correctly and
efficiently at scale.

Errors can manifest themselves exclusively at large scale,
such as deadlocks and integer overflows [7], as counters over-
flow or rare problems only appear consistently due to the
high number of processes. These situations necessitate de-
bugging at scale, which presents its own challenges, as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
XSEDE ’14 July 13-18 2014 Atlanta, GA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2893-7/14/07
http://dx.doi.org/10.1145/2616498.2616535 ...$15.00.

debugger becomes a massively parallel application in its own
right. Challenges that must be solved include managing and
analyzing the large volume of data produced by debuggers
and scalably presenting the results in a way that does not
overwhelm the user. In order to meet these challenges, there
are three main tasks: reducing tool start-up costs; utilizing
hierarchical structures and reduction networks; and utilizing
I/O resources efficiently [10].

PGDB [3] is the Parallel GDB, a debugger for MPI appli-
cations. It is a free and open-source debugger designed to
be familiar to programmers while enabling robust large-scale
debugging on multiple platforms. PGDB deploys remote
tool-daemons on each node the application to be debugged
(the target application) is running on, manages debuggers for
each target application process, transmits information back
to the front-end via a reduction network for efficient analysis
and processing, and displays it to the user in a manner de-
signed to emulate the environment one has when debugging
a single process.

This paper discusses the architecture and deployment of
PGDB and provides examples of it in use debugging repre-
sentative errors. It also provides an analysis of the perfor-
mance and scalability of PGDB on the Stampede supercom-
puter. Section 2 discusses related approaches and applica-
tions for parallel debugging. In Section 3, the architecture of
PGDB is described and in Section 4 the scalability and usage
of PGDB is discussed. Section 5 discusses future work to be
done on PGDB and Section 6 presents some final remarks.

2. RELATED WORK
Two other major parallel debuggers with reasonable scal-

ability are TotalView [4] and Allinea DDT [1]. However,
neither are free or open-source software.

The Stack Trace Analysis Tool (STAT) [7] uses a simi-
lar architecture to PGDB, and performs a similar task, but
it is far more limited in capability. Instead of providing
a full, interactive debugging environment, STAT only col-
lects stack traces from running programs. This makes for a
lighter-weight tool that is sufficient for some situations, but
fails to provide the necessary detail and capability in oth-
ers. The Eclipse Parallel Tools Platform [6] incorporates a
GDB-based parallel debugger within the Eclipse IDE. How-
ever, the debugger presently supports only a limited set of
clusters, and has scalability issues that PGDB does not. Fur-
ther, this requires a project to be integrated with Eclipse,
whereas PGDB can work with any project.

3. ARCHITECTURE

PGDB’s architecture is designed from the ground up to
be scalable and draws upon current and prior tools for in-
spiration, including STAT [7] and the Node Prism debug-
ger [14], as well as techniques for extending traditional de-
buggers for parallel debugging [8]. To this end, PGDB re-
lies upon proven tools to form a basis for its infrastructure:
GDB [2] for debugging target application processes, Launch-
MON [5] for MPIR interfacing and tool daemon launching,
and MRNet [13] for communication and reduction capabil-
ities. This combination has been used in other tools (e.g.,
STAT above), and enables effective scalability. PGDB is
written in Python, which makes it easy to extend and de-
ploy, due to Python’s ubiquity.

A core principle underlying PGDB’s architecture is that
most of the processes that make up the target application
behave in a similar manner. There are three broad situa-
tions that apply to most applications: they are correct; the
same error occurs on most or all of the MPI processes (for
example, every process has a segmentation fault); or an er-
ror occurs on a small subset of the processes. In the first
and second cases, almost every process in the application is
in approximately the same state. In the third case, due to
the collective nature of many MPI applications, after one
process fails, the remainder are typically blocked in a col-
lective operation. Hence most of the processes are again
in a similar state. This enables important optimizations in
communication and allows for more scalable presentation of
debug information.

The basic component of PGDB is a lightweight tool dae-
mon that is launched on each remote node the target appli-
cation is running on. These deploy and manage instances of
GDB, which handle the details of debugging the target ap-
plication. Control of each GDB instance is done via GDB’s
Machine Interface, an interface designed to enable GDB to
be embedded within another application. These tool dae-
mons communicate with a front-end controller via tree-based
overlay network, and take advantage of reduction filters in
order to provide a more compact representation of the data
for both transmission efficiency and scalable presentation.

3.1 Deployment
The deployment of PGDB consists of three steps: process

acquisition, deploying tool daemons, and setting up the com-
munication infrastructure. LaunchMON handles the bulk of
this in a scalable and platform-independent manner.

Process acquisition is the process of gathering informa-
tion on the target application, including the hostnames of
the nodes it is running on, and the process ID correspond-
ing to each of its ranks. This is handled by LaunchMON
using the MPIR process acquisition interface [11], which is
an unofficial standard supported by most MPI implemen-
tations. Using this information, LaunchMON scalably de-
ploys a tool daemon to each remote node and provides an
initial communication layer. Depending upon the environ-
ment and features supported by the MPI implementation,
LaunchMON uses the MPIR tool daemon launch extension
or an existing MPI launcher for the tool deployment.

Once deployed on each node, the front-end uses Launch-
MON to scatter network topology information to each back-
end node in order to configure the MRNet network. Only the
information a particular node needs is transmitted, to avoid
the excessive amount of data that would need to be broad-

cast at large scales. This is then used to deploy MRNet, a
scalable tree-based overlay network which serves as PGDB’s
main communications infrastructure. MRNet’s topology is
configurable, but in PGDB it defaults to a tree with a con-
stant pre-configured branching factor; the internal communi-
cation nodes can be deployed to either a dedicated allocation
or co-located with other tool daemons.

3.2 Communication
PGDB has several modes of communication, all of which

MRNet supports efficiently: sending messages from the front-
end to a subset of the tool daemons; broadcasting messages
to all the tool daemons; and sending messages from a tool
daemon to the front-end. Typically, messages sent from the
front-end are debug commands which are passed to GDB or
control commands which manipulate the tool daemons. Be-
cause of the logarithmic height of the communication tree,
each message passes through only a few intermediate nodes,
and no node has to be connected to every other node; hence,
the communication medium remains efficient even at large
scales.

Since it is common to send messages to subsets of nodes,
PGDB includes an efficient range representation that allows
efficient representation of and operations on contiguous se-
quences of integers, in order to refer to many ranks without
explicitly storing them all. This avoids memory problems
that applications can face when using overly-verbose data
structures [10].

As discussed above, it is typical for most of the processes
in the target application to be in approximately the same
state. Among processes that are in approximately the same
state, information produced by the debugger typically only
differs in memory addresses, data values, and the like, while
the structure and other information is the same. To take
advantage of this, PGDB employs a deduplication scheme
based upon substitution dictionaries. For a set of output
records of the same “type” (which is determined by PGDB
based upon the structure of each record), the structure is
extracted, and each field is filled with a substitution struc-
ture. These substitution structures store one copy of com-
mon data, as opposed to one copy of each record. As records
are transmitted up MRNet, reduction filters are applied at
each communication node to merge these substituted records
together.

Using this approach, PGDB reduces both the amount of
data and number of packets transmitted. Further, this en-
ables easier processing and presentation of data at the front-
end, as data can be displayed in aggregate.

3.3 Scalable Binary Deployment
On many clusters, the nodes PGDB is running on do not

have a local disk, and so system files are loaded over a paral-
lel filesystem. In a large-scale deployment, PGDB will have
a great many processes accessing the same files simultane-
ously as the tool daemons start up. This can cause signifi-
cant contention and overwhelm the parallel filesystem, since
the operations are no longer independent at large scales.
PGDB includes a scalable binary deployment (SBD) system
to eliminate this problem.

The SBD system first uses an interposition layer to in-
tercept filesystem operations. It examines the arguments
given to determine whether the file is on a parallel filesys-
tem or a local filesystem (such as /proc), and in the latter

case, transparently passes the function calls to the originals.
Otherwise, the interposition layer notifies the tool daemon
running on that node, which makes a request to the front-
end to load the file. The front-end accesses the file on the
filesystem and broadcasts the data to all the tool daemons,
on the assumption that most or all of them will be requesting
the same files. The data is then cached for a period at each
tool daemon, in order to avoid unnecessary re-broadcasts of
the data.

When used, the SBD system significantly reduces the num-
ber of filesystem operations; as the front-end performs each
operation only once, in general there are only a constant
number performed during PGDB’s start-up, the most inten-
sive point in terms of filesystem operations. This in turn
significantly reduces the stress on the parallel filesystem,
and results in faster start-up times at large scales. At small
scales, the SBD system adds a moderate amount of over-
head, but does not slow down the start-up process overly
much; further, if the system is unnecessary, it can be dis-
abled.

4. USAGE AND EVALUATION
In this section, we briefly discuss some issues with the

installation and deployment of PGDB to different systems,
including potential security implications. We then discuss
some typical usage cases of PGDB, including examples, in
order to provide a sense of how it works. Lastly, we briefly
discuss the scalability properties of PGDB and sources of
overhead.

4.1 Installation
PGDB has only a few dependencies, all of which are widely

supported, which makes for relatively easy deployment to
different systems. These dependencies are: LaunchMON,
MRNet, Python, GDB, and standard system tools such as
a compiler. Python and GDB are typically already present
on most systems; and if not are easy to install. MRNet like-
wise has an easy installation process. LaunchMON can be
troublesome to install on some systems, but PGDB has sig-
nificant documentation that provides workarounds for most
such problems.

Once these dependencies are present, PGDB requires only
some editing of configuration files so that it can find the
LaunchMON and MRNet libraries, GDB binary, and the
like. No further configuration is required, although there
are many options to tune PGDB to the system. Full docu-
mentation on this is available in PGDB’s manual.

PGDB has been successfully deployed and tested on a
variety of different systems, including XSEDE’s Stampede
and Trestles systems, clusters at the University of Illinois
at Urbana-Champaign, and clusters and supercomputers at
Lawrence Livermore National Laboratory. A Linux virtual
machine image with PGDB installed is also available for
small-scale testing and development.

The most notable stumbling block to installing PGDB
on systems is security settings. Debuggers can be inherent
security risks, and some systems include restrictions that
prevent them from operating, such as restricting or disabling
the ptrace system call. This is a necessary operation for
each GDB instance to debug the target application, and so
it cannot be disabled or significantly restricted for PGDB to
operate.

4.2 Usage
PGDB can be started in two different modes, depending

upon how one wants to debug the target application. The
first is “launch” mode, in which PGDB launches the appli-
cation entirely under its control. This is done with pgdb

[-launcher launcher] -a options , where launcher is an
optional argument specifying the MPI launcher to use, and
options specifies arguments to be passed verbatim to the
launcher. The second is “attach” mode, in which PGDB at-
taches to a target application that is already running and
launched separately. This is done with pgdb -p pid where
pid is the process ID of the MPI launcher (such as mpirun)
used to start the target application. These can be used to
debug applications running on both interactive and batch
partitions of clusters.

Once PGDB has been launched, one can begin debugging
the target application. The interface, both input and out-
put, has been designed to be as similar to GDB as possible.
Because of this, anyone who is familiar with GDB should
have no problems adjusting to PGDB. The primary differ-
ence in output is that instead of seeing output from only a
single process, the output from every process is displayed
simultaneously. In order to keep this manageable and avoid
overwhelming the user, output is deduplicated and aggre-
gated, so that data with the same structure is presented
only once, instead of repeatedly. This also makes it easier
to identify the processes on which something is awry. Each
set of output is prefixed with the associated MPI ranks from
which it came, such as [0] for processor 0 or [1-5,9] for
processors 1 to 5 and processor 9.

If a user wishes to examine the output from a particular
processor in detail, as opposed to aggregate, PGDB provides
an expand command, which will display the full output for
a particular processor.

By default, commands entered at the PGDB prompt are
sent to every processor. Often, the user wishes to send com-
mands to only a single processor, or a subset of them. For
this, there is the proc command, which takes an arbitrary
range of processors, followed by any PGDB command. Pro-
cessor ranges are specified using MPI ranks, so a user that
knows how processing is divided up in the MPI application
can access particular subsets. PGDB will then execute the
command on only those ranks.

As a convenience to the user, PGDB provides several ways
to modify and explore the data within an application. The
most basic are the print and x (for examine) commands.
The print command can be used to display the value of a
variable within the current frame of the application, and can
evaluate complex expressions which can change the state,
including function calls and assignment to variables. The
x command reads a range of bytes starting at a given ad-
dress, and is useful for examining data not easily accessible
through variables in the application. The companion to x is
write memory bytes, which writes arbitrary bytes to mem-
ory starting at an address.

PGDB includes a filtering system, controlled via the fil-

ter and unfilter commands, which allow data matching
certain criteria, such as MPI rank or message type, to be
filtered and not displayed. This filtering is done on each
remote tool-daemon to avoid transmission of unnecessary
data.

To make it easier to examine common STL containers,
such as std::string, std::vector, and std::map, PGDB

interfaces with and automatically loads GDB’s pretty-printers.
These introspect and provide human-readable representa-
tions of the contents of these containers, instead of providing
opaque listings of the internal structure.

Lastly, in order to facilitate exploration of structured data
such as classes, PGDB builds upon GDB’s variable objects,
which are exposed only through the machine interface. PG-
DB’s interface to this is especially designed to help explore
very large structures, especially in situations where, as on
very large projects, one may not fully understand the struc-
tures present in the program. This is used through the
varprint command, which takes a variable name in the pro-
gram as an argument. PGDB will then do a depth-limited
graph search of the structure, listing member data and the
associated value recursively while indicating the class hier-
archy. This interface also interacts with the pretty-printing
interface above. The depth limit is in place to avoid over-
whelming the user with very large data structures; it also
avoids listing all elements in very large containers unless ex-
plicitly required.

PGDB also differs from vanilla GDB in the way it inter-
acts with multi-threaded programs. PGDB runs in what is
known as non-stop, asynchronous mode. This allows each
thread of a program to be controlled independently of ev-
ery other thread. For example, one could pause one thread
while the other continue executing in order to expose dead-
locks. GDB’s support for debugging threads also means
that PGDB has “built-in” support for debugging applica-
tions that use OpenMP, and receives support for new fea-
tures when they are added to GDB.

Finally, we go through a simple example of PGDB’s usage,
meant to illustrate its interface and typical functioning. For
this example, the Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics (LULESH) application [9] was
used as a representative sample of a moderately-sized appli-
cation. LULESH is a proxy application representing a typi-
cal hydrodynamics code, and is a part of co-design efforts for
exascale. The build used here had debug symbols enabled
and optimizations disabled, as is typical for debugging, and
had both MPI and OpenMP components enabled.

The LULESH code was modified to cause one rank of the
application to have a segmentation fault during the running
of the application for the purposes of this example. This er-
ror was within the CalcKinematicsForElems function, part
of the Lagrangian code.

Since the error sometimes occurs soon after start-up, LU-
LESH was launched fully under the control of PGDB using
its launch mode:

pgdb -a -n 1000 -f nodelist ~/lulesh/lulesh2.0

This launches the lulesh2.0 binary with 1000 processes
on the nodes given in the nodelist file. The binary is then
stopped just before entering the main function. There is
some miscellaneous start-up information displayed, followed
by [0-1000] Done. indicating deployment of PGDB has
completed. Execution of the application is then begun, in
order to reproduce the bug under control of PGDB.

continue

[0-1000] Thread ID 1 running.

[0-1000] Done.

[1] Received signal SIGSEGV, Segmentation fault

continue tells all processes to resume execution, and PG-
DB reports that on each rank, thread ID 1 is now running. It
then reports that rank 1 has received SIGSEGV, indicating
a segmentation fault. The other processes are still running
at this point. To examine them in further detail, they need
to be stopped, as GDB cannot sample a program in detail
while it is running. Note that there is no need in general to
stop the entire application.

proc 0,2-1000 interrupt

[0,2-1000] Received signal 0, Signal 0

[0,2-1000] Done.

The interrupt command is prefixed with proc 0,2-1000

so the command is sent only to those processes. A backtrace
is now issued to every process, in order to discover the overall
state of the application (some output is truncated).

backtrace

...

[0,2-1000] #3 0x00002b38b6fb34ac in

PMPI_Waitall at src/mpi/pt2pt/waitall.c:297

[0,2-1000] #4 0x0000000000417563 in

CommSend at lulesh-comm.cc:843

[0,2-1000] #5 0x00000000004071ee in

CalcQForElems at lulesh.cc:1997

[0,2-1000] #6 0x0000000000408588 in

LagrangeElements at lulesh.cc:2446

[0,2-1000] #7 0x0000000000408a19 in

LagrangeLeapFrog at lulesh.cc:2641

[0,2-1000] #8 0x0000000000408db1 in

main at lulesh.cc:2762

Some results from 0,2-1000 omitted; use expand to view.

[1] #0 0x0000000000401abe in

CollectDomainNodesToElemNodes at lulesh.cc:261

[1] #1 0x000000000040fd58 in

CalcKinematicsForElems at lulesh.cc:1559

[1] #2 0x0000000000406d25 in

CalcKinematicsForElems at lulesh.cc:1538

[1] #3 0x0000000000406da4 in

CalcLagrangeElements at lulesh.cc:1612

[1] #4 0x0000000000408575 in

LagrangeElements at lulesh.cc:2443

[1] #5 0x0000000000408a19 in

LagrangeLeapFrog at lulesh.cc:2641

[1] #6 0x0000000000408db1 in

main at lulesh.cc:2762

This easily illuminates the state of the program. Process
1 is stuck in the CollectDomainNodesToElemNodes function
where it received the segmentation fault and every other
process is waiting within MPI_Waitall for all requests to
complete. Since process 1 has crashed, the program will
deadlock in this location. We now examine the local state
in this frame.

proc 1 info locals

[1] nd1i = 0

...

[1] elemToNode = 0x0

...

Examining the source code, it can be seen that the seg-
mentation fault is caused while accessing the elemToNode

pointer, which confirms the value seen in the code. Since
this is passed to the function as an argument, we examine
the other frames to identify where this goes wrong. The cur-
rent frame is changed, for example, with the proc 1 frame

1 command to change to frame #1. Alternately, every com-
mand takes an optional --frame argument that specifies the
frame it should be run in, which can be useful when issuing
commands in multiple frames. The elemToNode variable is
not defined in frame #2, however.

proc 1 print elemToNode --frame 2

[1] ERROR: No symbol "elemToNode" in current context

proc 1 print elemToNode --frame 1

[1] 0x0

Using this information, we can localize the point at which
elemToNode became invalid to a small range of code, which
can then be examined directly. If this were insufficient,
PGDB could instead be used to set watchpoints on every
processor as soon as the CalcKinematicsForElems function
was entered, in order to trace exactly where the variable was
modified.

PGDB’s presentation of debug output makes identifying
many kinds of errors easier. Suppose instead that LULESH
were experiencing a threading deadlock instead of a segmen-
tation fault. As soon as PGDB was attached to the appli-
cation and backtraces gathered, one could have a good idea
where in the code the source of the error was.

4.3 Scalability
PGDB’s scalability was evaluated on the Stampede super-

computer, located in the Texas Advanced Computing Cen-
ter. Stampede consists of 6400 compute nodes with sixteen
cores and 32GB of memory each, plus at least one Intel Xeon
Phi coprocessor. The nodes use an InfiniBand interconnect
in a 2-level fat-tree topology. Additionally, each node has
a 250GB local disk and mounts three global Lustre filesys-
tems. The local disk is used to store system files and provide
a local scratch space. For this evaluation, the Xeon Phi co-
processors were not used.

The test application for this evaluation was the LULESH
application used in the prior example, without any errors
introduced, as the goal here is purely to measure PGDB’s
scalability. For all these tests, PGDB is launched in attach
mode, to avoid the overhead of launching the target applica-
tion task in the performance assessment. LULESH requires
that the number of processes used be a cube of an integer;
this is why the number of processes used may seem unusual.

The first factor we consider is the start-up time for PGDB.
Debuggers that take too long to initialize impose a signifi-
cant usability burden, and the start-up process is the most
intensive portion of PGDB’s operation due to the need to
deploy tool daemons and load debug information about the
target application. To measure this, the PGDB front-end
records the time just before the LaunchMON engine is in-
voked to trace the MPI launcher process. It then watches
the responses of the tool daemons until every one has re-
ported itself ready to the front-end. The difference between
these two times is taken as the start-up time. Tests were
performed on jobs running on between 1 and 256 nodes on
Stampede (between 8 and 4096 processes). To help elim-
inate noise due to changing machine conditions, each test
was run five times and the results averaged together.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of cores

0

5

10

15

20

25

T
im

e
 (

s)

PGDB start-up times

Baseline
No SBD
SBD

Figure 1: Start-up times for PGDB: baseline, load-
ing files over the parallel filesystem, and loading files
over the SBD system.

At each scale, three different situations were evaluated.
In the first case, PGDB was launched with the SBD system
disabled and all files were loaded off the local drives on each
node. This illustrates the ideal baseline case for PGDB,
where every file operation is truly independent. In the sec-
ond and third cases, the files PGDB attempts to access were
relocated to the scratch Lustre filesystem. This situation is
similar to what is found on clusters where nodes lack local
storage. For the second case, the SBD system was disabled;
for the third case it was enabled. These data are plotted in
Figure 1.

In the ideal baseline case, PGDB scales very well, taking
only two seconds for start-up at the smallest scale and about
five seconds at the largest scale. At small scales, loading over
the parallel filesystem was also efficient, and took very little
additional time. However, as the target application scales,
this approach becomes less efficient. In contrast, when us-
ing the SBD system, there is initially overhead due to the
additional communication this entails. Beginning at about
512 processes, the SBD system as faster than loading files
over the parallel filesystem. At the very largest scale, load-
ing files over the parallel filesystem did not complete within
five minutes, and so the test runs were terminated.

The primary cause of this difference is the number of
filesystem operations. In the latter two cases, the number
of filesystem operations that actually reach the filesystem
were also recorded with an interposition system like the one
used in the SBD for up to 1000 processes. This counted the
number of open and fopen function calls directed to real
filesystems (as opposed to, for example, /proc). As every
file successfully opened has some additional operations per-
formed on it, this count provides a good proxy measure of
the total number of operations performed. This data is in
the table in Table 1. Without the SBD system, every filesys-
tem operation reaches the filesystem, and so the number of
operations scales linearly with the number of processes in the
target application. With the SBD system, only a constant
number of operations are performed, regardless of scale.

The scalability of PGDB’s communication was also evalu-

Cores: 8 27 64 125 216 343 512 729 1000
No SBD: 264 891 2112 4125 7128 11319 16896 24057 33000

SBD: 33 33 33 33 33 33 33 33 33

Table 1: Number of operations performed on the
filesystem by PGDB without and with the SBD sys-
tem.

1 2 4 8 16
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ra

n
sm

is
si

o
n
 t

im
e
 (

s)

Time to transmit from tool daemons to front-end

Deduplication
No deduplication

Figure 2: Time to transmit data from tool dae-
mons to front-end with and without deduplication.
(Nodes had 16 cores each.)

ated. While MRNet provides efficient communication, trans-
mitting too much data can overwhelm the network. The
deduplication system helps to avoid this case. The aver-
age time taken for a message to be transmitted from the
tool-daemons to the front-end over the course of a debug-
ging session was recorded with and without deduplication.
These results are presented in Figure 2 for between 1 and
16 nodes.

As expected, without deduplication, it takes longer to
transmit data at every scale but one node. The time to
transmit the data scales linearly with the number of pro-
cesses, due to the amount of data being produced increasing
linearly. In contrast, with deduplication enabled, the trans-
mission time grows very slowly. This is due primarily to less
data being transmitted, but the fewer number of packets
being sent over the network also contributes.

4.4 Overhead
We consider two aspects of overhead related to PGDB: ad-

ditional memory usage and communication overhead. Note
that these are a separate issue from the application being
slowed by running under the control of the debugger, which
is an aspect of overhead that is more the province of the
underlying GDB debuggers than PGDB.

PGDB deploys one instance of the GDB debugger to each
node the target application is running on, and GDB then
loads the debug symbols for each process. When processes
share debug symbols (for example, they have the same shared
libraries or are running the same binary), only one copy
of the symbols are loaded. This minimizes memory over-
head as much as possible while keeping the debug symbols

distributed for scalability. For some applications that have
extremely large numbers of debug symbols, PGDB can be
instructed to not load symbols for shared libraries unless
explicitly requested, in order to further minimize overhead.

The majority of PGDB’s heavy communication occurs
during start-up, but this typically does not influence the ap-
plication as it is paused very early in the process. When the
user is not running commands and there are no events such
as breakpoints being triggered, PGDB does very little com-
munication and typically does not affect application com-
munication patterns. When data is transferred, the dedu-
plication support within PGDB reduces the impact, as the
previous section discussed.

5. FUTURE WORK
There are three primary areas for improvement in PGDB:

its scalability, its system support, and its interface. At very
large scales, where the SBD system is important, loading
files exclusively from the front-end node will become a bot-
tleneck due to the height of the tree increasing the time to
transfer data, especially with large files. Instead, PGDB
should load files from a subset of the MRNet communica-
tion nodes, which then broadcast the files to their descen-
dant tool daemons. This will result in smaller, independent
broadcasts that are more manageable while also improving
file loading times. As the number of communication nodes is
quite small relative to the total number of processes in the
target application, this should not overwhelm the parallel
filesystem. Further work also needs to be done to investi-
gate PGDB’s performance at extremely large scales.

While PGDB has been tested and is known to work on
many platforms, it has not yet been tested on Cray and IBM
Blue Gene systems. Support for these should not be overly
difficult, as both systems support PGDB’s dependencies, but
architectural and environmental differences will pose a chal-
lenge.

It is also important for PGDB to support different pro-
gramming models such as Intel Xeon Phis and GPUs. Sup-
port for debugging Xeon Phis should not, in principle, be
difficult to add. Intel maintains a fork of GDB as its primary
debugger, and includes support for Xeon Phis in it [15], and
this can likely be used without many changes to PGDB. De-
bugging support for GPUs is significantly harder, and GDB
does not have any support for it. NVIDIA provides CUDA-
GDB [12], which supports CUDA applications and may be
a way forward for integrating GPU debugging support for
PGDB, however the feasibility of this approach has not yet
been investigated.

Lastly, PGDB attempts to emulate GDB’s interface, which
provides a familiar environment for some, but there are
many people who are unfamiliar with GDB. A GUI inter-
face has been proposed for PGDB, which would allow it to be
more easily accessible for a wider userbase. This could also
enable more intuitive presentations of the data that PGDB
can collect on the target application’s state.

6. CONCLUSIONS
As clusters and supercomputing platforms continue to scale,

we must extend debuggers to support these scales. Unlike
at small scales, in these environments debuggers become
massively-parallel applications in their own right, and must
be treated as such when designed and implemented.

PGDB provides a free and open-source debugging option
that is capable of efficiently scaling to large problems, in
terms of both its underlying architecture and its user inter-
face. It builds upon LaunchMON and MRNet, both proven
technologies for supporting tools at very large scales. Its
debugging capabilities and interface leverage the familiarity
and power of GDB, in order to provide a host of features.
These also enable PGDB to be deployed to a wide range of
system environments with relatively little difficulty.

Debuggers are an indispensable component of software de-
velopment regardless of the scale one is working at. PGDB
provides a quality option for this at the scales applications
on clusters and supercomputers require.

7. ACKNOWLEDGMENTS
This work used the Extreme Science and Engineering Dis-

covery Environment (XSEDE), which is supported by Na-
tional Science Foundation grant number OCI-1053575. The
author would also like to thank Aaron Black and Mike Owen
of Lawrence Livermore National Laboratory, Dan LaPine
and Alex Zahdeh of the National Center for Supercomput-
ing Applications, and Marc Snir of the University of Illinois
and Argonne National Laboratory for their support and ad-
vice throughout the development of PGDB.

8. REFERENCES
[1] DDT. http://www.allinea.com/products/ddt/.

Accessed: 2014-03-10.

[2] GDB. https://sourceware.org/gdb/. Accessed:
2014-02-20.

[3] PGDB. https://github.com/ndryden/PGDB.
Accessed: 2014-02-20.

[4] TotalView. http:
//www.roguewave.com/products/totalview.aspx.
Accessed: 2014-03-10.

[5] D. H. Ahn, D. C. Arnold, B. Supinski, G. L. Lee, B. P.
Miller, and M. Schulz. Overcoming scalability
challenges for tool daemon launching. In Parallel
Processing, 2008. ICPP’08. 37th International
Conference on, pages 578–585. IEEE, 2008.

[6] J. Alameda, W. Spear, J. L. Overbey, K. Huck, G. R.
Watson, and B. Tibbitts. The eclipse parallel tools
platform: toward an integrated development
environment for xsede resources. In Proceedings of the
1st Conference of the Extreme Science and
Engineering Discovery Environment: Bridging from
the eXtreme to the campus and beyond, page 48.
ACM, 2012.

[7] D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L.
Lee, B. P. Miller, and M. Schulz. Stack trace analysis
for large scale debugging. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–10. IEEE, 2007.

[8] S. M. Balle, B. R. Brett, C.-P. Chen, and
D. LaFrance-Linden. Extending a traditional debugger
to debug massively parallel applications. Journal of
Parallel and Distributed Computing, 64(5):617–628,
2004.

[9] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates
and changes. Technical Report LLNL-TR-641973,
August 2013.

[10] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R.
De Supinski, M. Legendre, B. P. Miller, M. Schulz, and
B. Liblit. Lessons learned at 208k: towards debugging
millions of cores. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008.
International Conference for, pages 1–9. IEEE, 2008.

[11] MPI Forum Working Group on Tools. The MPIR
process acquisition interface version 1.0.

[12] NVIDIA. CUDA-GDB.
https://developer.nvidia.com/cuda-gdb. Accessed:
2014-05-27.

[13] P. C. Roth, D. C. Arnold, and B. P. Miller. Mrnet: A
software-based multicast/reduction network for
scalable tools. In Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 21. ACM, 2003.

[14] S. Sistare, D. Allen, R. Bowker, K. Jourdenais,
J. Simons, et al. A scalable debugger for massively
parallel message-passing programs. Parallel &
Distributed Technology: Systems & Applications,
IEEE, 2(2):50–56, 1994.

[15] Software and Services Group, Intel Corporation. Intel
Xeon Phi Product Family: The GNU Project
Debugger. https://software.intel.com/sites/
default/files/article/256677/intel-mic-gdb.pdf.
Accessed: 2014-05-27.

http://www.allinea.com/products/ddt/
https://sourceware.org/gdb/
https://github.com/ndryden/PGDB
http://www.roguewave.com/products/totalview.aspx
http://www.roguewave.com/products/totalview.aspx
https://developer.nvidia.com/cuda-gdb
https://software.intel.com/sites/default/files/article/256677/intel-mic-gdb.pdf
https://software.intel.com/sites/default/files/article/256677/intel-mic-gdb.pdf

	Introduction
	Related Work
	Architecture
	Deployment
	Communication
	Scalable Binary Deployment

	Usage and Evaluation
	Installation
	Usage
	Scalability
	Overhead

	Future Work
	Conclusions
	Acknowledgments
	References

