Aluminum: An Asynchronous, GPU-Aware
Communication Library Optimized for Large-Scale
Training of Deep Neural Networks on HPC Systems

Nikoli Dryden*T, Naoya Maruyama*, Tim Moon*, Tom Benson*, Andy Yoo*, Marc Snir, Brian Van Essen*
*Lawrence Livermore National Laboratory
{maruyama3,moon13,benson31,y002,vanessenl } @lInl.gov
TDepartment of Computer Science
University of Illinois at Urbana-Champaign
{dryden2,snir} @illinois.edu

Abstract—We identify communication as a major bottleneck
for training deep neural networks on large-scale GPU clusters,
taking over 10x as long as computation. To reduce this overhead,
we discuss techniques to overlap communication and computation
as much as possible. This leads to much of the communication
being latency-bound instead of bandwidth-bound, and we find
that using a combination of latency- and bandwidth-optimized
allreduce algorithms significantly reduces communication costs.
We also discuss a semantic mismatch between MPI and CUDA
that increases overheads and limits asynchrony, and propose
a solution that enables communication to be aware of CUDA
streams. We implement these optimizations in the open-source
Aluminum communication library, enabling optimized, asyn-
chronous, GPU-aware communication. Aluminum demonstrates
improved performance in benchmarks and end-to-end training
of deep networks, for both strong and weak scaling.

Index Terms—Deep learning, machine learning, communica-
tion optimization, collective algorithms, HPC

I. INTRODUCTION

With the success of deep learning, accelerating the training
process has become increasingly important, particularly as
model complexity and dataset sizes grow. Many training
toolkits have emerged that leverage multiple GPUs, either on
a single node or across multiple nodes [1]-[7]. Simultane-
ously, large clusters of GPUs have begun to be deployed and
leveraged for training deep networks. Efficiently utilizing such
systems requires careful optimization of many aspects of the
training process. In particular, reducing communication over-
heads stands out as one of the most significant requirements,
especially in order to scale to large node counts.

Many of the current approaches to distributed training can
be broadly divided into model- and data-parallel techniques. In
model-parallel techniques, a neural network layer is partitioned
across multiple processors. This is typically applied to fully-
connected layers [1]], where it is essentially a distributed
matrix product, but it has also been demonstrated for locally-
connected layers [8]. Scaling matrix products is a well-studied
problem in numerical linear algebra [9], [[10]. In data-parallel
techniques, layers are replicated and a mini-batch’s data is
partitioned across multiple processors, which perform forward

and backward propagation independently before synchroniz-
ing their parameter updates. This is the typical approach to
distributed training for convolutional layers, and is also often
applied to entire networks.

Scaling data-parallelism typically relies on increasing the
size of the training mini-batch, as scalability is ultimately
limited by the number of samples in each mini-batch. Ad-
ditionally, larger mini-batches help ensure that each processor
is efficiently utilized. Increasing mini-batch size is non-trivial,
as it can impact the quality of the learned model and has a
complex interplay with the model’s learning rate [11[]-[14].
Several techniques have demonstrated successful large mini-
batch training, including linear warmups [15] and layer-wise
adaptive learning rates [[16]], typically for image classification
problems. It remains to be seen how general these approaches
are, especially when applied to non-image data.

The communication requirements for data-parallel training
are particularly large due to the need to synchronize parameter
updates. This operation is a global allreduce operation on each
layer’s parameters. As modern networks often have large num-
bers of parameters and many layers, this allreduce is a signifi-
cant cost, and communication has been consistently identified
as a major bottleneck in scaling [[17]], [18]. The allreduce is
typically implemented either via centralized parameter servers,
which accumulate and distribute updates from workers; or in
a distributed manner via an operation like MPI_Allreduce.
Some systems make use of sparse, quantized, or compressed
communication to reduce communication overhead [[19]-[21];
we view these approaches as complementary to our work.

In this work, we study the communication requirements for
training modern deep networks and identify implementation
techniques to reduce them. Our focus is on distributed GPU
systems using CUDA and MPI, where all nodes are intercon-
nected with a high-speed network. This is typical of modern
GPU supercomputers.

We begin by examining communication overheads for both
strong and weak scaling of training. Using ResNet-50 [22] as
our example, we find that even at small scales, communication
accounts for a significant portion of total runtime and the

overhead worsens rapidly as training is scaled onto more
GPUs. This is exacerbated for strong scaling, where the
volume of work per processor decreases with scale while the
cost of communication increases, making strong scaling to
large numbers of GPUs unprofitable. Weak scaling fares better,
but communication overheads still prevent optimal scaling, and
it yields poor improvements on many GPUs. We then turn to
alleviating the communication overheads.

Overlapping communication and computation is a standard
approach to help hide communication overheads. The standard
formulation of backpropagation and gradient descent for train-
ing deep networks enables communication to be overlapped
with no algorithmic changes, and we show that when done
well, this can significantly reduce communication overheads.
To maximize overlap, we aim to begin communication as
soon as possible: whenever a layer has finished computing its
updates, an allreduce for it is started. This leads to relatively
fine-grained communication and requires quality implementa-
tions of non-blocking communication. Since communication
is done for each individual layer, the volume of data being
communicated in each operation is quite small. This results
in many of the allreduces being latency-bound rather than
bandwidth-bound, contrary to the typical case for training deep
networks. Latency also becomes increasingly important at at
large scales.

Once latency becomes a significant factor in communication
performance, local synchronization overhead also becomes a
concern. The standard approach to interfacing CUDA-aware
MPI for communication with data being computed on GPUs
is to synchronize the stream computing the data prior to
beginning communication. This imposes overheads both due
to synchronization and because kernel launch latencies for
GPU computations cannot be pipelined as effectively. Fur-
ther, performing this synchronization blocks the host, limiting
host/GPU overlap, which is especially important for hiding
I/O costs. We propose instead to make our communication
operations aware of the stream a GPU buffer is being com-
puted on. This enables them to function similarly to a CUDA
kernel, and minimizes the synchronization overheads without
impacting pipelining or overlap. Unfortunately, current MPI
distributions, even those that are CUDA-aware, do not provide
a means to do this.

These improvements enable the communication overhead
for training deep networks to be significantly reduced and
training to be scaled to larger systems. We summarize our
contributions as follows:

« We examine the communication overheads involved in train-
ing deep networks and show that overlapping can signifi-
cantly reduce them.

o We identify the importance of getting good performance
for fine-grained, often latency-dominated communication.
We show how latency-optimized allreduce algorithms can
significantly outperform the more common bandwidth-
optimized ring algorithms for relevant data sizes, especially
at scale.

« We demonstrate techniques to perform communication on
GPU data in a non-blocking manner for both the host and
GPU, while reducing synchronization overheads.

« We introduce the Aluminum library, an open-source libra
that implements our communication techniques and provides
a generic interface to communication substrates. Its API is
similar to MPI’s and it can be used as a replacement for
existing libraries with trivial changes.

e We evaluate the impact of these methods in both mi-
crobenchmarks and end-to-end training within the open-
source LBANN toolkit [1].

II. COMMUNICATION REQUIREMENTS

We begin by discussing in more detail the communication
involved in training a deep network, including where the
communication occurs and what volume of data is moved. This
forms the basis of our subsequent discussion on optimizing
communication.

A. Where and what is the communication?

Training a deep network can be thought of as involving
three phases that are repeated iteratively: forward propaga-
tion, backpropagation, and optimization. Forward propagation
involves computing the output of the network for the input
data (essentially, inference). Backprop computes gradients to
update the network parameters based on its inference, and the
optimization phase applies the updates, typically using a vari-
ant of stochastic gradient descent. When using a data-parallel
approach to parallelize training, communication is performed
only during backpropagationﬂ (see for the model-parallel
case). This communication is an allreduce that synchronizes
the independent updates that each processor computes into a
global update that can be applied independently. (See [23]-
[25] for overviews of deep learning and its optimization and
parallelization.)

Implementations can perform this allreduce either using
centralized parameter servers (e.g. as in TensorFlow) or
via a decentralized allreduce implementation such as MPI’s
MPI_Allreduce or equivalent. We focus on the latter case
exclusively in this work.

Backprop is performed sequentially for each layer in a
network, beginning with the final layer and ending with the
input layer. Each layer receives as input an “error signal” from
the subsequent layer, and computes a modified error signal as
its output. If a layer additionally has parameters to learn, the
layer will compute a gradient based on the input error signal.
It is important to note that within a layer, these two operations
are independent and can be performed in any order. Once the
gradient has been computed, it can be combined with other
processors’ gradients to compute the global gradient for that
layer.

The granularity of communication can vary depending
on the implementation. At one extreme, all data could be

Uhttps://github.com/LLNL/Aluminum
20ne could equivalently think of communication as being performed during
the optimization phase; we choose backprop for convenience.

https://github.com/LLNL/Aluminum

Frequency

2 2
I 1 I 1 1 1

Parameter count

0

2
<
@
»

4096
34848
614400
884736
1327104
4096000
16777216
26214400

(a) AlexNet

Frequency
o » o N » 8 R B 8
o+ I =
125 | -
250
512 [
1024 | ®
2048 | >
4096 -
9408 |-~
16384 [>
32768 |-~
36864 [
65536 [~
131072 [~
147456 [~
262144 | =
524288 [~
589824 [>
1048576 [
2048000]
2097152 =~
2359296 [l

Parameter count

(b) ResNet-50

Fig. 1. Histograms breaking down the number of parameter buffers (essentially, a layer) of a given size for the AlexNet and ResNet-50 networks. In our

implementation, each parameter is a 4-byte float.

Strong scaling Weak scaling
0.18 - -8 600 - =12
Il Computation
0.16 - HEE Communication -7
—eo— Ratio 500 - -100
- ©
0.14 -6 E
S
%012~ 400 - -8
o -) 3
£o10- g E
§ -4 = 300- -6 2
© S c
3 0.08 - S s
£ -3]
= 0.06 - 200 - -4 g
- £
0.04 - 2 g
100 - -2 O
0.02 - -
0.00 - -0 0- Hmmm

8 16 32 64 128 256 51210242048

#GPUs

8 16 32 64 128 256
#GPUs

Fig. 2. Strong and weak scaling results for ResNet-50 using our synthetic
benchmark on Sierra, using NCCL with no communication/computation
overlap.

combined into a single buffer and allreduced once backprop
completes for every layer. Alternatively, allreduces can be done
as soon as the gradient computation for a layer completes, and
work on a per-buffer basis. Many implementations (including
ours) keep separate, non-contiguous buffers for the parameters
for each layer for simplicity, so operating on a per-buffer basis
is typical.

In this work, our layers use 4 byte single-precision floats
to store parameters, and we communicate parameters in this
format. Within the networks we consider, convolutional, fully-
connected, and batch normalization layers have parame-
ters that must be learned. In our implementation, convolutional
and fully-connected layers have their parameters stored in a
single buffer per layer. Batch normalization, for convenience,
has two buffers, one each for its scale and bias.

B. Communication volume

We now look to understand the amount of data and number
of buffers that must be communicated in an iteration. This
depends on the architecture of the network being trained

(e.g. number and size of filters in a convolutional layer).
Figure [I] plots histograms of parameter buffer size for two
representative image classification networks, AlexNet and
ResNet-50 [22]].

AlexNet is a fairly shallow network that has several large
fully-connected layers, and is a commonly used baseline or
building block where state-of-the-art accuracy is not necessary.
It has relatively few buffers: five convolutional layers and three
fully-connected layers, with all but the final layer having a
separate bias. The three largest buffers are the fully-connected
layers, which contain a majority of the parameters.

ResNet-50 is more representative of modern CNNs, which
have many more layers, batch normalization, and fewer fully-
connected layers. ResNet architectures do not have biases,
but many of the small buffers are due to the parameters for
batch normalization layers. Since many recent architectures
and benchmarks have focused on ResNet-like architectures
or ResNet-50 in particular (e.g. [28]]), we will use it for the
remainder of the paper.

A key observation to make from these plots is that both
networks require allreduces to be performed on many small
buffers. For ResNet-50, a majority of the buffers are 8 KiB
or less. However, there is also a very large range of buffer
sizes, spanning 256 bytes to megabytes. A single algorithm
for performing the allreduce is unlikely to perform optimally
for all of these sizes, as they span both latency- and bandwidth-
dominated regimes. (We demonstrate this in Section m)

C. Communication overhead

We now empirically examine the communication overhead
involved in training ResNet-50 on ImageNet in various
configurations. Our goal in this section is to understand the
baseline performance, which can then be improved upon. We
utilize a simple synthetic benchmark that incorporates the
compute cost of convolutional layers (the primary compu-
tational cost in ResNet-50) and the communication cost of
synchronizing layer gradients.

The compute time is determined by benchmarking the
runtime of the relevant cuDNN [30]] routines for convolution
on the local problem size of each convolutional layer. Com-
munication time is determined by benchmarking allreduces of
the relevant sizes, using the NCCL collective communication
library [31]. We assume that a separate allreduce is performed
on each buffer. We treat the fully-connected layer as being
model-parallel (see and neglect it for simplicity; as it is
a small layer, this does not significantly affect our results. Note
that this benchmark is meant to illustrate the major sources of
communication and computation, and neglects many aspects
of a full training pipeline, such as I/O, optimization, activation
layer computation, and internal synchronization.

We run this benchmark on the Sierra supercomputer [32],
which consists of 4,320 compute nodes with two IBM
POWERY9 CPUs and four NVIDIA V100 (Volta) GPUs with
NVLINK?2 per node, interconnected via a dual-rail InfiniBand
EDR network. We use CUDA 9.2.148, cuDNN 7.2.1, and
NCCL 2.3.

1) Strong scaling: To strong scale ResNet-50 training, we
keep all parameters constant and increase the number of GPUs
being trained on. The mini-batch size is 256, per the original
paper. Due to memory constraints, we cannot train ResNet-50
on fewer than 8 GPUs, and the mini-batch limits us to at most
256 GPUs. We additionally neglect issues that may be caused
by batch normalization having few samples per node [33],
[34].

We plot the mini-batch iteration time, as well as a break-
down of computation versus communication, in Figure
(left). As the number of GPUs increases, the computation
time decreases, but the scaling is unfortunately sublinear.
Simultaneously, communication requirements increase as more
nodes are involved while the number of iterations remains
constant. Runtimes improve up to 32 GPUs, after which
communication overheads outweigh the benefits. The commu-
nication/computation ratio rapidly increases, and even at only
32 GPUs accounts for more than half the runtime.

2) Weak scaling: For weak scaling, we keep every param-
eter but the mini-batch size fixed and train with 32 samples
per GPU. This is the same regime as [15] or [[16]], which
demonstrate how to maintain model accuracy despite the large
mini-batch, and offers a good compromise between GPU
utilization and memory requirements. Note that as the mini-
batch size increases, the number of iterations to complete an
epoch decreases (it is 4955 iterations when the mini-batch size
is 256).

We plot total epoch time, again with a communica-
tion/computation breakdown, in Figure [2] (right). In this case,
computation scales linearly. The total time for communica-
tion decreases as the number of GPUs increases, because
fewer iterations are performed, resuling in fewer rounds of
communication, although this trend breaks down for large
numbers of GPUs. However, the ratio of communication to
computation steadily worsens, resulting in a nearly 6x ratio
of communication to computation on 1024 GPUs and 12x
on 2048 GPUs. Despite this, it remains profitable to weak

scale ResNet-50 training to this scale, though it suffers from
significant diminishing returns.

D. Model-parallel fully-connected layers

We briefly discuss the differences in communication when
using model-parallel fully-connected layers. These essentially
implement a distributed matrix product, which can be thought
of as a collective operation involving every processor. Com-
munication is now required in both forward and backward
propagation to compute the layer’s output, error signal, and
gradients; however, no additional communication is needed to
synchronize the gradient update. Since matrix products typi-
cally require their input data to have a particular distribution
(e.g. blocked), data may need to be moved from a ‘“data-
parallel” distribution for this. The communication operations
performed depend on the algorithm being used, but typically
involve a variety of collectives beyond allreduce.

III. OPTIMIZATIONS

We now discuss two basic optimizations for reducing com-
munication overhead and improving performance: overlapping
and latency-efficient allreduce algorithms. Neither of these
techniques are new. Overlapping communication and computa-
tion during training has been discussed before (e.g. [15]), and
we will provide additional detail on implementing them with
GPUs. Latency-efficient allreduces are similarly not new [35]];
however, deep learning applications have typically preferred
bandwidth-optimized ring-based allreduce implementations as
in the Baidu allreduce [5]] or NCCL/NCCL2 [31]] libraries.

A. Overlapping

Overlapping communication and computation when train-
ing deep nets involves performing gradient update allreduces
concurrently with backpropagation and optimization. This can
be done within the constraints discussed in Section [[-Al
Thus, to maximize the potential for overlapping, each layer
should compute its local gradient update first and then start
an asynchronous allreduce on that buffer. The remainder of
backprop can be performed in the same manner, and the
allreduce completed when the optimization phase for that layer
begins. This enables the allreduce to be hidden by the error
signal computation in the associated layer, and all computation
in all remaining layers.

Achieving communication/computation overlap when run-
ning on GPUs requires additional work, as we do not want to
block the CUDA stream training computations are performed
on. We can instead make use of separate, internal streams
to perform the communication and handle synchronization as
needed.

B. Latency

While performing allreduces as soon as possible helps
maximize overlap, it results in many small allreduces being
performed, some as small as 64 parameters (256 bytes). This
size regime is latency-dominated instead of being bandwidth-
dominated, and the size of allreduces that are latency-
dominated increases as the number of GPUs increases.

Typically, allreduce libraries for deep learning have
been bandwidth-optimized and employ ring-based algo-
rithms [Sf], [31]]. These algorithms perform very well in multi-
GPU shared-memory systems (especially ones optimized to
have ring topologies, such as the NVIDIA DGX1) or at
small distributed-memory scales despite not being latency-
optimized. AlexNet-style networks (see Figure also have
far fewer small allreduces and several very large allreduces.

Tree-based allreduce algorithms can offer much better
performance in latency-dominated regimes [35]. Recursive-
doubling is preferred for small messages, and has opti-
mal latency. Recursive-halving/recursive-doubling (also called
Rabenseifner’s algorithm) has slightly worse latency, but better
bandwidth utilization, and is preferred for larger messages.

To make this more precise, if « is the network latency
and g its inverse bandwidth, p the number of processors,
and n the buffer size, the communication time for a ring
allreduce is 2(p — l)a + 2%1116. This explains the in-
creasing communication time in Figure The bandwidth
term remains nearly constant as p increases, but the latency
term rapidly becomes important, especially with many small
messages. In contrast, recursive-doubling has communication
time logp(a + nB), and Rabenseifner’s algorithm has com-
munication time 2logpa + ZPlenﬁ. While Rabenseifner’s
algorithm has the same bandwidth term and better latency
than the ring algorithm, the nearest-neighbor communication
in rings often enables them to outperform it in practice for
large messages.

In this work we present the Aluminum library, which
augments NCCL with tree-based algorithms and dynamically
select the fastest algorithm based on the buffer size and
the number of processors. An additional optimization is to
run multiple allreduces concurrently. In a latency-dominated
regime, we are not limited by packet injection rates or similar
issues, but instead by waiting for communication to complete.
This enables pipelining the allreduces to further reduce com-
munication overhead.

IV. INTERFACING WITH MPI

Modern MPI distributions provide large suites of optimized
communication algorithms, including tree-based allreduce al-
gorithms. Many of them are also “CUDA-aware”, in that they
accept pointers to GPU buffers and can perform communica-
tion on them. Why can we not simply use CUDA-aware MPI
directly for allreduces when appropriate? Fundamentally, we
argue that because MPI is unaware of users’ CUDA streams, a
semantic mismatch between the MPI and CUDA programming
models arises, leading to communication and computation
overheads due to unnecessary synchronization. We will then
discuss approaches to fixing this mismatch.

A. Problems

When using CUDA to compute data on a GPU, one typically
launches a sequence of compute kernels on a CUDA stream.
The CUDA runtime ensures that kernels launched on a stream
are executed in launch order (there is no ordering between

multiple streams unless one is imposed using explicit syn-
chronization). This means that, provided kernels are launched
in the right order, all its inputs are ready when it begins
execution. Kernel launches (along with most other CUDA
operations) are asynchronous and do not block the host, but
there is a cost (roughly 10 ps) associated with launching them.
For this reason, one typically launches many kernels in a row
without waiting for their completion, pipelining the launches
and hiding the launch latency for every kernel beyond the first.

MPI runtimes are unaware of users’” CUDA streams. There-
fore, when a user passes a GPU buffer to an MPI routine,
MPI has no way to determine whether there is a pending
computation on a stream that will write to the buffer. To ensure
correctness when a kernel may write to the buffer, the user
must synchronize the stream to complete pending computation.
This forces the application into a bulk-synchronous model of
separated computation and communication phases, preventing
pipelining of kernel launches and overlapping of communi-
cation and computation. Similarly, when MPI communication
is in progress, there is no way for a stream to wait for a
blocking operation’s completion (e.g. MPI_Allreduce or
MPI_Wait). This further means that other streams that might
synchronize with the first stream also need to be blocked.

Alternating computation and communication phases in this
manner leads to an awkward and error-prone programming
model, and underutilization of both the network (during com-
putation phases) and GPU (during communication). Frequent
blocking on the host also limits the ability to overlap com-
munication and computation with other operations, such as
I/0. In the context of training deep nets, I/O can be quite
expensive, so hiding it is crucial. Finally, when latency-
optimized communication is necessary for scaling, minimizing
additional synchronization is important.

A further concern with using CUDA-aware MPI is prac-
tical. We have observed that CUDA-aware MPI runtimes
often do not handle operations with GPU buffers correctly
when they are performed from multiple threads, even when
MPI_THREAD_MULTIPLE is enabled. We hope that this can
be resolved by improved documentation and bug fixes by MPI
distributions.

B. Possible solutions

One solution that achieves correctness is to push the syn-
chronization into the MPI library. Since it is unaware of which
user stream is producing the buffer to be communicated, the
library must synchronize the entire device, either explicitly or
via CUDA’s default stream semantics. This resolves none of
the performance issues noted above.

A more promising solution is to treat MPI communication
operations as “just another kernel” to be enqueued on a stream.
As a proof-of-concept, NCCL operations take a stream as an
argument and employ the usual kernel launch semantics: it
doesn’t block the host, is ordered within the stream, and blocks
the stream.

Unfortunately, MPI operations cannot take a stream pa-
rameter. However, we find it sufficient to associate a single

LBANN
Scalable Deep Learning Toolkit

Hydrogen

GPU-Accelerated ¢---7---3 CUDA-aware MPI
.

Distributed Linear Algebra /

/

)
. NCCL + custom

= = CPU-Only

Aluminum
High-performance GPU-aware
communication library

---- GPU-Accel

Fig. 3. Integration of Aluminum into the open-source toolkits LBANN and
Hydrogen.

stream with a communicator. Every operation that uses the
communicator and a GPU buffer can then assume that the
buffer is written to by some kernel on that stream, and
perform the appropriate synchronization with respect to only
that stream. Within MPI, this association can be implemented
as an attribute attached to the communicator. To achieve good
performance, the implementation can then make use of fine-
grained CUDA events and other synchronization, driven by a
background thread, to progress communication without block-
ing execution. We have taken this approach and implemented
it in our Aluminum library, detailed in the next section.

While this paper has focused on allreduces, due to their
importance in training deep networks, these approaches are
in no way exclusive to allreduces and are applicable to any
communication operation.

V. THE ALUMINUM LIBRARY

We have developed the Aluminum library as an open-source
communication library. It provides a generic API for commu-
nication operations implemented by multiple backends, and
currently supports MPI, NCCL, and custom implementations
of various operations for both CPU and GPU communication.
Aluminum does not replace other communication libraries,
but provides a portable layer to optimized communication
substrates as well as benefiting from the ubiquity of MPI as
a baseline. For example, it would be easy to support AMD’s
software stack with little change in applications.

This library encapsulates the proposed optimizations dis-
cussed in Sections [Tl and [V-B] including easy non-blocking
operations on both host and GPU, latency-optimized algo-
rithms, and CUDA-friendly synchronization semantics. It is
currently being leveraged by both the LBANN deep learn-
ing toolkit [1] and the Hydrogen distributed linear algebra
library [36] (a fork of the Elemental library [37]) as shown in
Figure [3] Section [V]] presents benchmarks demonstrating the
effectiveness of these optimizations.

A. API and semantics

Aluminum is a C++11 library with an API inspired by
MPTI’s. This similarity means that integrating Aluminum into
existing applications should be quite simple. In particular,
since NCCL and/or MPI are frequently used by distributed

TABLE I
ALUMINUM ALLREDUCE CAPABILITIES BASED ON BACKEND.

Backend Algorithm Support Features

MPI Ring, recursive-doubling, Ubiquitous, optimized
Rabenseifner

NCCL Ring GDR, optimized for GPUs

MPI-CUDA Ring, recursive-doubling, Host-transfer algorithm

Rabenseifner

deep learning frameworks, they can easily take advantage of
Aluminum.

It consists of a core providing internal implementation
frameworks and three communication backends (and is ex-
tendable to support more):

MPI provides both an interface to MPI (by directly calling
MPI routines) and custom collective implementations
built atop of MPL. It is meant to be used with host buffers.

NCCL provides a direct interface to NCCL for use with GPU
buffers.

MPI-CUDA implements a variety of custom algorithms that
are built on top of MPI and CUDA for use with GPU
buffers. This backend implements our ‘“host-transfer”
allreduce. (This is independent of CUDA-aware MPI.)

The backends and notable features are summarized in Table [l

The API to invoke a non-blocking, in-
place allreduce (for example) looks like:
Al::NonblockingAllreduce<Backend> (buffer,
count, op, comm, req), where buffer and count
define the buffer to be reduced, op is a reduction operation
(e.g. summation), comm is an Aluminum communicator
object, and req is a request object. C++ templates are used
to infer the type of the buffer and dispatch the operation
to the correct backend. Aluminum also handles algorithm
selection where appropriate, making a reasonable choice
based on the buffer and communicator sizes (this can also
be manually specified by the user). The allreduce then
proceeds asynchronously, and can be completed via a wait
operation: Al::Wait<Backend> (req). Every backend
automatically handles Aluminum’s synchronization semantics,
described below.

Aluminum currently supports a subset of the standard
MPI collective operations in both blocking and non-blocking
versions, including: reduce, allreduce, reduce-scatter, allgather,
and broadcast. The MPI-CUDA backend additionally supports
the basic send, recv, and sendrecv point-to-point operations
for GPU buffers. The NCCL backend is currently limited to
only the subset of reduction operations that NCCL supports
(summation, multiplication, min, and max); our other backends
support a more general set of reduction operations.

The semantics of Aluminum’s blocking and non-blocking
operations differs from MPI, and it implements the approach
discussed in Section [[V-B] in a manner that provides a fairly
generic interface for both CPU and GPU operations. We
associate a “stream of computation” with each communicator.

For GPU backends, this is a CUDA stream. For the MPI
backend, this stream is implicit, and can be thought of as
the calling thread or process; this could be made explicit in
the future to better support threading or lightweight threading
libraries. All operations then synchronize the communicator’s
stream as necessary. This is critically important for GPU
operations, where it means that no GPU operation blocks
the host. From the example above, if the Al::Wait op-
eration were used with the MPI-CUDA backend, it would
(perhaps counterintuitively) not block the host, but instead
block comm’s CUDA stream until the allreduce completed.

B. Implementation details

We now detail some of the notable implementation details
for Aluminum.

1) Communication engine: Any communication that must
perform operations on the host without blocking the main
thread of execution need to be run in a separate, dedicated
thread that serves as the communication or progress engine.
This thread is automatically bound by the library to a core, and
uses some basic heuristics to avoid conflicting with both other
processes that may be on the same node and other threads (e.g.
OpenMP compute threads) that the application may spawn.
Asynchronous operations are submitted to the communication
engine as a state object that encapsulates the operation to
be performed and any necessary state (essentially, a closure).
Submission is done via a lock-free single-producer, single-
consumer queue (implemented as a classic Lamport queue [|38]]
with modifications described in [|39]], and could be generalized
to a MPSC queue). The engine maintains an internal queue of
currently running state objects, and invokes a step method
on them, which should not block. When the operation has
completed, the engine can optionally indicate this to other
threads by atomically setting a flag in a request object.

This implementation approach is inspired by the communi-
cation engines that have been used in other high-performance
communication libraries [40], [41].

Aluminum’s MPI backend utilizes the progress engine to
provide asynchronous progress on the host both for custom
algorithm implementations and via MPI_Test polling for
non-blocking MPI operations. We do this because we have ob-
served that MPI implementations often do not make adequate
progress on their own without polling (see also e.g. [42]). The
host-transfer allreduce also makes use of the progress engine
to perform communication, as we describe next.

2) Non-blocking and host-transfer allreduce: Aluminum
has a heavy focus on non-blocking communication with GPU
buffers. For the NCCL backend, non-blocking allreduces are
automatically run on one of Aluminum’s internal CUDA
streams, described in Figure E[The A1: :Wait operation im-
plements the synchronization to complete the communication.
This allows communication to proceed without blocking the
user’s stream or the host. In our experiments and profiling, we
have observed that this strategy enables excellent communica-
tion/computation overlap.

NCCL Allreduce

Internal stream

Data stream —‘ Data Complete

Fig. 4. Performing a non-blocking allreduce using NCCL. Data is computed
on a stream by the application, and a separate, internal stream is synchronized
to the first. This stream performs the NCCL allreduce, while the data stream
can perform other computation. When the result is needed, the internal stream
can be synchronized back to the data stream. (Red boxes are synchronization,
such as CUDA events. Boxes are not to scale.)

Other work

Allreduce

Comm engine

Data stream

Fig. 5. Implementation of the blocking host-transfer allreduce. The data
buffer to transmit is computed on the data stream, after which a device-to-host
memcpy transfers moves the buffer to the host. CUDA event synchronization
is used to determine when the transfer has completed, after which an MPI
allreduce is performed. Meanwhile, the data stream is blocked with a wait
operation, until the host signals completion, after which a host-to-device
memcpy transfers the buffer back. A second event signals completion of this
transfer, so temporary resources can be released. (Boxes are not to scale.)

For latency-dominated workloads, we have implemented a
“host-transfer” allreduce that encapsulates MPI’s tree-based
allreduce algorithms. As described in Section [[II-B] these
can be significantly more performant than NCCL in the
right regimes. At a high level, this implementation simply
transfers the GPU memory to the host, performs the allre-
duce in host memory using MPI, and transfers the result
back to the GPU. To avoid the caller blocking the host, the
operation enqueues the necessary kernels and events on the
communicator’s stream, and then delegates communication to
Aluminum’s communication engine. Polling on CUDA events
is used to determine when memory transfers have completed.
To block the stream while communication is in progress,
the cuStreamWaitValue32 operation from the CUDA
driver API is used. This prevents any work submitted to the
stream after the call from beginning until a memory location
is written. The entire process is described in more detail
in Figure 5] A non-blocking version of this is implemented
similarly to non-blocking operations for NCCL, by running

Comm engine

Allreduce

Internal stream

Data stream —‘ Data Complete

Fig. 6. Implementation of the non-blocking host-transfer allreduce. This is
similar to the blocking version, but ron on an internal stream and a separate
completion operation is used to invoke the synchronization with the data
stream to complete the operation. (Boxes are not to scale.)

Other work

Strong scaling Weak scaling
0.18 - -8 600 - =12

I Computation
0.16 - W=-. Communicationr -7

—e— Ratio 500 - -10 0
- o
0.14 6 g
S
3012~ 400- -8 g
b -5 3 E
Q ~ [=%
£ 010- 2 E
§ -4 = 300- -6 £
©) c
g 008~ S 5
z -3 & 3
S 0.06- 200 - -4 2
S
E
-2
0.04 - g
100 - -2 O
002- -
0.00 - -0 0- Emmm

8 16 32 64 128 266 51210242048

#GPUs

8 16 32 64 128 256
#GPUs

Fig. 7. Strong and weak scaling results for ResNet-50 using our syn-
thetic benchmark on Sierra, using Aluminum+NCCL with communica-
tion/computation overlap. The bars break down runtime by computation and
unoverlapped communication.

on an internal stream (see Figure [6).

Because we transfer the entire GPU buffer to the host,
this approach could be significantly optimized by utilizing
GPUDirect RDMA (GDR) [43]], and by pipelining for longer
messages.

While we have described and implemented this “host-
transfer” approach for allreduces, it can be applied to any
communication operation. We briefly describe applying this
approach to send and recv operations next.

3) Other operations: Send and recv operations that support
Aluminum’s semantics for GPU buffers are useful both to sup-
port applications that require more irregular communication
patterns and as building blocks for custom implementations
of collectives. Both operations can be implemented similarly
to the host-transfer allreduce.

For a send operation, we transfer the data from the GPU to
the host and then use MPI_Isend within the communication
engine to perform the completion. The communicator’s stream
does not need to be blocked: similarly to MPI’s semantics,
we consider it locally complete when the user buffer can
be reused. For recv, the communication engine can begin an
MPI_TIrecv immediately while blocking the communicator’s
stream. Once complete, the stream is notified and the buffer
transferred to the GPU.

Using these operations as primitives, we have implemented
our own ring allreduce in Aluminum’s MPI-CUDA back-
end. This allreduce pipelines communication and host/GPU
memory transfers, supports both single- and bi-directional
rings, and performs reduction operations on-GPU. While this
implementation is not always competitive with NCCL’s (in
particular, it does not take advantage of GDR), it does enable
additional flexibility by supporting reduction operations that
NCCL lacks.

VI. BENCHMARKS

To demonstrate the advantages of our overlapping and
latency optimizations, we apply the same benchmark as in

II-C} now using Aluminum.

A. Overlapping

Figure [7] plots the runtime and communication/computation
breakdown for strong and weak scaling using NCCL with
overlap (compare with Figure [2). At small scales, we suc-
cessfully overlap nearly all communication; indeed, for weak
scaling, communication is not a significant factor until 256
GPUs.

For strong scaling the runtimes improves in every case,
however, beyond 32 GPUs there is simply too much commu-
nication and insufficient computation to hide it. In particular,
because many allreduces can only be started toward the end
of backprop, allreduces later in backprop always have less
computation available to hide them. Nonetheless, overlapping
still reduces communication overhead in these cases. 32 GPUs
remains the optimal number to use in this case, and runtime
is improved by ~1.4x here.

For weak scaling, the constant amount of local computation
means that Aluminum is able to hide more of the commu-
nication. Unfortunately, at very large scales, communication
overheads with NCCL remain too high, and profitability for
weak scaling is very low beyond 256 GPUs. At 2048 GPUs,
the runtime is almost entirely communication.

B. Latency

To demonstrate the different regimes in which NCCL and
our latency-optimized host-transfer allreduce are better, we
conducted a simple benchmark comparing their performance
across a range of node/GPU counts (2-512 nodes/8-2048
GPUs) and buffer sizes (1-228 parameters) on Sierra. For each
configuration we computed the average over ten runs of the
in-place version of allreduce algorithm, after a warmup run.
The underlying MPI distribution was MVAPICH2 2.3rc2.

Figure|[TT]plots the actual performance results for each scale.
We can see that NCCL has a significant advantage at the
smallest scale (two nodes), that gradually disappears as the
number of nodes increases. At small scales, the impact of
latency is smaller, so the difference between the ring and
tree-based algorithms is relatively small. The host-transfer
algorithm starts performing better at 64 GPUs, and at 128
GPUs, it is over 2x faster than NCCL for small messages. At
2048 GPUs, this increases to over 20x. Further, the tree-based
allreduces scale much better with increasing node count than
NCCL’s ring-based allreduce.

Figure [I0] plots which implementation is faster for a given
configuration, providing a summary of Figure Once run-
ning on 64 GPUs (16 nodes), the host-transfer allreduce
outperforms NCCL for messages of up to 32768 parameters.
At the largest scale, the host-transfer allreduce is preferred for
messages up to 2! parameters.

It may be somewhat surprising that NCCL performs well
even for very small messages up to 32 GPUs. We attribute
this to two factors. First, NCCL is able to take advantage of
GPUDirect RDMA [43] and node-local topology information,
to reduce communication overhead and latency. Second, our

Minimal (no overlap) Minimal (with overlap)

0.18 - -8 0.18-
Il Computation

0.16 - HEE Communication -7 0.16- -7
—e— Ratio o
- - ©
0.14 _g 014 62
S
% 012~ 0.12- T
© -5 -5 2
£o10- 0.10- E
5 -4 -42
oo0s- 0.08 - 5
€ -3 -38
= 0.06- 0.06 - €
g
0.04 - "2 o04- 2 5
[$)

0.02 - -1 002- -1

0.00 - -0 0.00- -0

8 16 32 64 128 256 8 16 32 64 128 256
#GPUs #GPUs

(a) Strong scaling

Minimal (no overlap)

Minimal (with overlap)
600 - =12 600 -

500 - =10 500 - =10

]
©

c

S

400 - -8 400- -8 g
z 2
£ g
= 300 - -6 300- -6 2
S c
8 S
ar 8
200 - -4 200- -4 €
3

E

£

o

100 - -2 100- I s -2°

0- [TS 0- —_——

8 16 32 64 128 256 51210242048

#GPUs

8 16 32 64 128 256 51210242048

#GPUs

(b) Weak scaling

Fig. 8. Strong and weak scaling results for ResNet-50 using our synthetic benchmark on Sierra, using Aluminum to dynamically select either NCCL or our
latency-optimized host-transfer allreduce. The bars break down runtime by computation and unoverlapped communication.

0.14 - —¥— NCCL

_ —e— Minimal -1
0
s ==
= o12- Sheeily
5
©
2
Zo010-
£
o]
o
© 0.08-
£
c
S
2 0.06 -
8
=
g
E 004-
Q
S

0.02 -

23 24 25 26 27 25
#GPUs

(a) Strong scaling

S

~ ®
=} S
1 1

@
S
|

Communication time per epoch (s)
5
1

*o-—-——-e--—-0

#GPUs

(b) Weak scaling

Fig. 9. Communication time and speedup for strong and weak scaling for ResNet-50 in our synthetic benchmark. The NCCL and minimal lines plot the
absolute communication time at that scale, and the speedup line plots the improvement of the minimal algorithm over NCCL at that scale.

® Host-transfer
10 v NCCL

Size (#parameters)
~

#GPUs

Fig. 10. The fastest allreduce algorithm for a given number of GPUs and
buffer size on Sierra. A green dot marks the configurations our host-transfer
allreduce is fastest; a red triangle when NCCL is. The host-transfer point for
32 GPUs appears to be due to a protocol change or similar within NCCL.

implementation is a prototype whereas NCCL is an optimized
production library.

It is important to observe that the size range where the

host-transfer allreduce outperforms NCCL corresponds to a
significant portion of the allreduces required when training
AlexNet or ResNet-50 (see Figure [T). While these allreduces
also tend to be faster, improving their performance helps to
reduce communication overheads during training.

To this end, we repeat the benchmark from Section [[I-C| with
a “minimal” algorithm that is a hybrid of the host-transfer and
NCCL allreduces. This algorithm uses our prior benchmarking
results to select the fastest implementation for a given input
configuration. The results for strong and weak scaling (with
and without overlap) are presented in Figures [8a] and [8b]

Strong scaling benefits less from the better allreduce algo-
rithms, as the regime where it is profitable is not significantly
impacted by them. Nonetheless, at larger scales communica-
tion overhead is significantly reduced. This implies that with a
better implementation and improved compute scaling, we may
be able to successfully strong-scale training further.

Weak scaling exhibits a more noticable impact, dramatically
improving the performance at large scales. Whereas NCCL,
even with overlap, barely improves performance beyond 256,
the minimal algorithm sees continued profit in scaling to 2048

+— Host-transfer Ve s

10° 10° 10° A 10 ,l-' 10
NCCL 2 / ’ A
7m" ’/ 10" o 510 ’/"l 510" 1 F10"
e e ° e F 7 Fo 2 A
£ // g S g s £ Y, Eo /
10 y
. . . / -) . ,
107 easasasevett o . . A s
(L ——— o/ 107 esrpers ot tesaaesds? 10 eveea
S g g RO RO 2 S g 2 RO
Size (#parameters) Size (#parameters) Size (Hparameters) Size (parameters) Size (#parameters)
(a) 8 GPUs (b) 16 GPUs (c) 32 GPUs (d) 64 GPUs (e) 128 GPUs
10° [10° 10° 10°
g @ 107" @10" 1 !
° ° @ °
E10? E0? E10? Eo?

10° 107 /
oo
-4 HMOM'I'/ 4 atetee "‘/

N J R Y
Size (#parameters) Size (#parameters)

(f) 256 GPUs (g) 512 GPUs

Size (#parameters)

(h) 1024 GPUs

Size (#parameters)

(i) 2048 GPUs

Fig. 11. Performance results for our host-transfer allreduce and NCCL'’s allreduce on Sierra.

GPUs. Furthermore, communication overhead, while still quite
high, is significantly improved, by over 5x at 2048 GPUs.

To illustrate more directly the communication improvements
within the benchmark, we plotted only the communication
time for both NCCL and the minimal algorithm in Figure [9}
Here we can quite clearly see that speedups in communication
begin at 64 GPUs; below that, the minimal algorithm is iden-
tical to NCCL. Beyond 64 GPUs, performance improvements
accrue rapidly, such that the minimal algorithm is over 4x
faster than NCCL alone at 2048 GPUs.

We investigated running multiple allreduces concurrently,
but we have observed that NCCL performs only a single
allreduce at a time, even if multiple allreduces could be
executed. While our host-transfer allreduce does not have this
restriction, we did not incorporate this optimization into our
benchmarks here.

VII. TRAINING EXPERIMENTS

To evaluate end-to-end training in a real environment, we
integrated Aluminum into the LBANN toolkit [[I]], which is
optimized for training deep networks on large GPU HPC
clusters. We train ResNet-50 on the ImageNet-1K dataset [[29]]
using Sierra, with data being read off a Spectrum Scale parallel
filesystem.

Strong scaling is performed by fixing the mini-batch size to
256, the default, and increasing the number of GPUs. Weak
scaling fixes a per-GPU mini-batch size of 32, increasing the
global mini-batch size as the number of GPUs increases. This
results in fewer iterations being performed per epoch. Note
this is the same setup as in our synthetic benchmark. MVA-
PICH2 v2.3 was used as the underlying MPI distribution (see
Section for other system/software details). Experiments
were performed using up to 256 GPUs on 64 nodeﬂ

We compare three configurations: LBANN using CUDA-
aware MPI, Aluminum with NCCL, and Aluminum with
NCCL and the host-transfer allreduce (HT). In the last config-
uration, a static performance model selects between NCCL

3We could not scale beyond this due to system issues.

and HT, similar to the “minimal” algorithm in our prior
benchmarks. Notably, based on our benchmarks, NCCL is
preferred exclusively when running on fewer than 64 GPUs.
Strong and weak scaling results are presented in Figure

Both strong and weak scaling exhibit similar trends to those
in our benchmark (compare with Figure [8). However, I/O is
now a major factor in runtime, which was not reflected in
it. Other computations (optimization, etc.) are also present.
This results in additional work that communication can be
overlapped with, reducing overhead.

CUDA-aware MPI is significantly outperformed by both
Aluminum configurations. Aluminum+NCCL is ~2.4x and
~1.5x faster than CUDA-aware MPI for strong scaling at
64 GPUs and weak scaling at 256 GPUs, respectively. Alu-
minum+NCCLA+HT is ~2.5x and ~1.9x faster in these cases.
Aluminum’s semantics for communication with GPU buffers
means that both NCCL and the host-transfer allreduce are
asynchronous with respect to the host, enabling I/O to be
overlapped much more extensively.

When strong scaling, this additional work enables scaling
to be profitable up to 64 GPUs (compared to 32 GPUs in our
benchmark), after which communication overheads and poor
compute scaling begin to dominate. At 64 GPUs, the host-
transfer algorithm begins to slightly improve communication
performance, resulting in a ~1.05x improvement in runtime,
which is commensurate with the modest improvements over
NCCL our benchmarks show at this scale. We see larger
speedups with more GPUs, despite it not being profitable;
future communication optimizations may enable strong scaling
at these scales.

Weak scaling shows improvements of similar magnitude,
except the better compute scaling means that it is profitable
up to 256 GPUs. The host-transfer algorithm again shows
improvements beginning at 64 GPUs, and results in a ~1.25x
performance improvement over NCCL at 256 GPUs.

Overall, both strong and weak scaling demonstrates the
advantages of Aluminum over vanilla CUDA-aware MPI, and,
at larger numbers of GPUs, the importance of taking latency
into consideration when selecting communication algorithms.

—e— CUDA-aware MPI T
—¥— AI+NCCL / -120
/

—+— ANCCL+HT

/
-®- NCCL+HT speedup over NCCL 7
II
/ -1.15
/
1

/

0.35-

0.30 -

0.25-

-batch time (s)

1
5
Speedup

ini

0.20 -

M

-1.05

0.15-

-1.00

#GPUs

(a) Strong scaling
Fig. 12.

VIII. RELATED WORK

Many other frameworks for training deep neural net-
works, including TensorFlow [3]], PyTorch [4], FireCaffe [2],
LBANN [[1], and CNTK [[7] aim to scale training, and optimize
communication to that end. While these frameworks often
implement a variety of optimizations, they typically rely on
either MPI or NCCL to provide the underlying communication
layer on dedicated clusters, and therefore can benefit from
the optimizations we have discussed and implemented within
Aluminum.

There are several communication layers that have been
developed primarily to accelerate training deep networks, and
can be integrated into existing frameworks such as TensorFlow.
These often aim to replace centralized parameter servers with a
decentralized allreduce implementation. Baidu’s allreduce [3]]
was the first attempt to leverage ring allreduces for training
deep networks, and is implemented atop CUDA-aware MPI
to manage GPU communication. Facebook’s Gloo [44] sup-
ports a number of collective algorithms, including multiple
optimized allreduce implementations; it builds upon MPI,
node-local NCCL (but not distributed NCCL), and custom
communication layers. Uber’s Horovod [6] similarly supports
allreduces and several other collectives, and builds upon
CUDA-aware MPI and NCCL. Horovod supports tensor fu-
sion, which attempts to address issues with latency-bound
allreduces by merging the buffers together to perform fewer,
larger allreduces. Baidu’s allreduce implements none of the
optimizations we have described; Gloo and Horovod will not
block host execution, but do not overlap computation on the
GPU, and do not implement latency-optimized allreduces.

NCCL [31] and MPI are most similar in approach to
Aluminum, and we build upon both in many ways, as dis-
cussed throughout the paper. NCCL lacks native support for
non-blocking allreduces and is not latency-optimized; MPI
suffers from a semantic mismatch with CUDA that limits
its performance. NVSHMEM [45]] implements high-optimized
point-to-point communication that avoids the semantic issues
MPI suffers from while being entirely managed from a GPU.

-1.20

Epoch time (s)

-1.05

-1.00

(b) Weak scaling

Strong and weak scaling for end-to-end training of ResNet-50 in LBANN with Aluminum on Sierra. (Note the log scale for weak scaling.)

It provides no collective operations, but could be useful as a
building block for higher-level systems.

Many works have investigated scaling training by increasing
the mini-batch size (weak scaling) [15], [[16], [46]]. The pri-
mary contribution of these approaches works is not the scal-
ing techniques, but the learning techniques used to maintain
model accuracy despite the large mini-batch size. [46] does
discuss large-scale communication, but similarly to Horovod,
addresses latency concerns through tensor fusion.

Another significant body of work has investigated many
other approaches to parallelizing training; we refer the reader
to [25] for an excellent overview. We view these techniques
as orthogonal to our work here: they can be leveraged in
concert to improve performance. One important class of work
that more closely relates is quantization [19]-[21]]. These
approaches aim to trade additional local computation to reduce
communication volume, and are particularly applicable to opti-
mizing allreduces on large buffers. Quantization complements
our work especially well, as it requires good overlap between
computation and quantization+communication and shifts more
communication into a latency-bound regime. [47] discusses
techniques and APIs that enable efficient implementation of
quantized communication.

IX. CONCLUSIONS

We have examined the communication requirements for
training deep neural networks, and found that the overhead
of communication is significant, and becomes the dominant
cost at scale. We applied several optimizations to reduce this
overhead. Overlapping communication and computation and
using latency-optimized algorithms helps to directly reduce
this overhead. Identifying and working around the semantic
mismatch between MPI and CUDA both reduces overheads
and enables overlapping of host and GPU computation. We
incorporated these improvements into the open-source Alu-
minum library.

We do not view these optimizations as inherent to Alu-
minum or the present work, and encourage other libraries,
especially MPI distributions, to adopt them. These techniques

are also not limited to training deep networks; other ap-
plications that leverage GPUs, such as numerical or graph
analytics applications, can benefit from them too. Aluminum’s
semantics and point-to-point communication implementations
are a step toward supporting more irregular communication
patterns.

Our work has improved the strong and weak scaling of
training deep networks significantly. However, both remain
heavily communication-bound at large scales. Strong scaling
has always been difficult due to diminishing computational
work and increased communication requirements. Aluminum
enables profitable weak scaling to large numbers of GPUs, but
communication overheads limit the benefits. As GPUs con-
tinue to improve computational performance, while network
bandwidth grows slowly and latencies reach physical limits,
communication will only become a more critical bottleneck in
the future. To efficiently utilize large GPU clusters, implemen-
tors must pay close attention to the optimizations described
here, and develop improved techniques that reduce latencies,
minimize overheads, and ultimately scale communication.

ACKNOWLEDGMENTS

Prepared by LLNL under Contract DE-AC52-07NA27344
(LLNL-CONF-757866). Funding provided by LDRD #17-
SI-003. Additionally, some of the testing and development
support work needed to complete this research was funded
by the Sierra Institutional Center of Excellence at LLNL.
Experiments were performed at the Livermore Computing
facility. The authors would like to thank the LBANN team
for their assistance.

REFERENCES

[1] B. Van Essen, H. Kim, R. Pearce, K. Boakye, and B. Chen, “LBANN:
Livermore Big Artificial Neural Network HPC toolkit,” in MLHPC.
ACM, 2015, p. 5.

[2] F.N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:
near-linear acceleration of deep neural network training on compute
clusters,” in CVPR, 2016, pp. 2592-2600.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265-283.

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS-W, 2017.

[5] Baidu Research, “Baidu allreduce,” https://github.com/baidu-research/
baidu-allreduce, 2018.

[6] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[71 F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-
learning toolkit,” in KDD. ACM, 2016, pp. 2135-2135.

[8] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in ICML, 2013, pp. 1337-
1345.

[9] M. D. Schatz, R. A. Van de Geijn, and J. Poulson, “Parallel matrix multi-

plication: A systematic journey,” SIAM Journal on Scientific Computing,

vol. 38, no. 6, pp. C748-C781, 2016.

R. A. Van De Geijn and J. Watts, “SUMMA: Scalable universal matrix

multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,

no. 4, pp. 255-274, 1997.

S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Computation,

vol. 9, no. 1, pp. 1-42, 1997.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.

Tang, “On large-batch training for deep learning: Generalization gap and

sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]
[33]
[34]
[35]
[36]
[37]
(38]
(39]

[40]

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi,
C. Borgs, J. Chayes, L. Sagun, and R. Zecchina, “Entropy-SGD: Biasing
gradient descent into wide valleys,” arXiv preprint arXiv:1611.01838,
2016.

L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, “Sharp minima can
generalize for deep nets,” arXiv preprint arXiv:1703.04933, 2017.

P. Goyal, P. Dolldr, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “ImageNet
training in minutes,” CoRR, abs/1709.05011, 2017.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “On parallelizability of
stochastic gradient descent for speech DNNs,” in ICASSP. 1EEE, 2014,
pp. 235-239.

J. Keuper and F.-J. Preundt, “Distributed training of deep neural
networks: Theoretical and practical limits of parallel scalability,” in
MLHPC. IEEE Press, 2016, pp. 19-26.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNSs,” in INTERSPEECH, 2014.

N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication
quantization for data-parallel training of deep neural networks,” in
MLHPC. IEEE, 2016, pp. 1-8.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in NIPS, 2017, pp. 1709-1720.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223-311,
2018.

T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” arXiv preprint
arXiv:1802.09941, 2018.

S. Joffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097-
1105.

C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “DAWNBench: An end-
to-end deep learning benchmark and competition,” in NIPS, 2017.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” IJCV, vol.
115, no. 3, pp. 211-252, 2015.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cuDNN: Efficient primitives for deep learning,”
arXiv preprint arXiv:1410.0759, 2014.

NVIDIA, “NVIDIA collective communications
developer.nvidia.com/nccl, 2018.

Lawrence Livermore National Laboratory, “Sierra,” https://hpc.1Inl.gov/
hardware/platforms/sierra, 2018.

S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” in NIPS, 2017, pp. 1945-1953.

Y. Wu and K. He, “Group normalization,” arXiv preprint
arXiv:1803.08494, 2018.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” IJHPCA, vol. 19, no. 1, pp. 49—
66, 2005.

Hydrogen team, “Hydrogen,” https://github.com/LLNL/Elemental, 2018.
J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM TOMS, vol. 39, no. 2, p. 13, 2013.

L. Lamport, “Proving the correctness of multiprocess programs,” I[EEE
transactions on software engineering, no. 2, pp. 125-143, 1977.

N. M. L&, A. Guatto, A. Cohen, and A. Pop, “Correct and efficient
bounded FIFO queues,” in SBAC-PAD. 1IEEE, 2013, pp. 144-151.

A. Brooks, H.-V. Dang, N. Dryden, and M. Snir, “PPL: an abstract
runtime system for hybrid parallel programming,” in ESPM2. ACM,
2015, pp. 2-9.

library,” https:/

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
http://www.deeplearningbook.org
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra
https://github.com/LLNL/Elemental

[41]
[42]
[43]

[44]
[45]

[46]

[47]

H.-V. Dang, M. Snir, and W. Gropp, “Towards millions of communicat-
ing threads,” in EuroMPI. ACM, 2016, pp. 1-14.

P. R. Eller and W. Gropp, “Scalable non-blocking preconditioned con-
jugate gradient methods,” in Supercomputing. 1EEE Press, 2016, p. 18.
NVIDIA, “GPUDirect RDMA,” https://docs.nvidia.com/cuda/
gpudirect-rdma/index.html, 2018.

Facebook, “Gloo,” https://github.com/facebookincubator/gloo, 2018.

S. Potluri, A. Goswami, D. Rossetti, C. Newburn, M. G. Venkata, and
N. Imam, “GPU-centric communication on NVIDIA GPU clusters with
InfiniBand: A case study with OpenSHMEM,” in HiPC. IEEE, 2017,
pp. 253-262.

X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

C. Renggli, D. Alistarh, and T. Hoefler, “SparCML: High-
performance sparse communication for machine learning,” arXiv
preprint arXiv:1802.08021, 2018.

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/facebookincubator/gloo

	Introduction
	Communication requirements
	Where and what is the communication?
	Communication volume
	Communication overhead
	Strong scaling
	Weak scaling

	Model-parallel fully-connected layers

	Optimizations
	Overlapping
	Latency

	Interfacing with MPI
	Problems
	Possible solutions

	The Aluminum library
	API and semantics
	Implementation details
	Communication engine
	Non-blocking and host-transfer allreduce
	Other operations

	Benchmarks
	Overlapping
	Latency

	Training experiments
	Related work
	Conclusions
	References

