
Towards Scalable Parallel Training of Deep Neural Networks
Sam Adé Jacobs

Lawrence Livermore National Laboratory
jacobs32@llnl.gov

Nikoli Dryden
Department of Computer Science

University of Illinois at Urbana-Champaign
Lawrence Livermore National Laboratory

dryden2@illinois.edu

Roger Pearce
Lawrence Livermore National Laboratory

rpearce@llnl.gov

Brian Van Essen
Lawrence Livermore National Laboratory

vanessen1@llnl.gov

ABSTRACT
We propose a new framework for parallelizing deep neural net-
work training that maximize the amount of data that is ingested
by the training algorithm. Our proposed framework called Liver-
more Tournament Fast Batch Learning (LTFB) targets large-scale
data problems. The LTFB approach creates a set of Deep Neural
Network (DNN) models and trains each instance of these models
independently and in parallel. Periodically, each model selects an-
other model to pair with, exchanges models, and then run a local
tournament against held-out tournament datasets. The winning
model is will continue training on the local training datasets. This
new approach maximizes computation and minimizes amount of
synchronization required in training deep neural network, a ma-
jor bottleneck in existing synchronous deep learning algorithms.
We evaluate our proposed algorithm on two HPC machines at
Lawrence Livermore National Laboratory including an early access
IBM Power8+ with NVIDIA Tesla P100 GPUs machine. Experi-
mental evaluations of the LTFB framework on two popular image
classi�cation benchmark: CIFAR10 [18] and ImageNet [19], show
signi�cant speed up compared to the sequential baseline.

KEYWORDS
deep learning, data parallelism, parallel computing
ACM Reference format:
Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen. 2017.
Towards Scalable Parallel Training of Deep Neural Networks. In Proceedings
of Machine Learning in HPC Environments , Denver, CO, USA, November
12–17, 2017 (MLHPC ’17), 9 pages.
DOI: 10.1145/3146347.3146353

1 INTRODUCTION
The machine learning “revolution” has impacted several areas of
computing, science, and engineering. Machine learning has been
made popular in part, by the volumes and rates at which data are
now captured, generated, processed, and analyzed. Deep learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MLHPC ’17, Denver, CO, USA
© 2017 ACM. 978-1-4503-5137-9/17/11. . . $15.00
DOI: 10.1145/3146347.3146353

in particular has attracted signi�cant attention, and researchers
have reported success of its applications in several domains in-
cluding medical science [7], visual object recognition and image
classi�cation [3, 8, 16, 19, 23], speech processing [12, 13, 28], text
processing [9] among others. Despite the remarkable progress in
deep learning, substantial resources and time are still required in
training computationally intensive deep learning applications.

In recent years, much attention has focused on parallel and
distributed computing in solving deep learning problems at scale [9,
25–27]. For many data-intensive applications such as deep learning,
parallel and distributed processing o�ers either improved time to
solution or the opportunity to achieve a higher quality solution via
more extensive training; both approaches enable larger problems to
be solved than were feasible before. However, many of the current
approaches in distributed deep neural network such as parameter
server and asynchronous model update [9, 27] do not scale well
to “wide" parallel data training algorithms or large data set. Some
emerging research e�orts [6, 11] are focusing on increasing the
amount of data processed in each training step (i.e. mini-batch size),
and have achieved good scaling, but only up to several thousand
samples per training step.

The most common and existing neural network training tech-
nique uses gradient descent to optimize the parameters (i.e., weights,
biases) of the network through error backpropagation [2]. Paralleliz-
ing gradient descent requires frequent synchronizations to produce
a single gradient for all participants. These high-frequency synchro-
nizations limit the scalability of gradient descent based training
algorithms on large-scale HPC systems. Data parallelism is typ-
ically achieved by processing multiple input samples in a single
step as a “mini-batch”, which typically produces a better step in the
descent. However, there are limits to the size of mini-batch, how
e�ective the resulting step is, and how well the algorithm converges
with fewer steps. Techniques that simply sum the parameters from
independent models (via direct exchange or parameter servers)
are examples of increasing the mini-batch size and exhibit these
problems with convergence as the mini-batch scales to thousands
of training examples per step. We made attempt in this work to
address this problem by exploring a novel and new direction.

To address the aforementioned problem, we develop a new par-
allelization framework called Livermore Tournament Fast Batch
Learning (LTFB) primarily targets at scaling deep neural network
training for Big Data HPC. The main thrust of the proposed parallel
algorithm is to minimize the amount of synchronization required

MLHPC ’17, November 12–17, 2017, Denver, CO, USA Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen

for each step of the training algorithm and to develop a mecha-
nism for merging or combining independently trained models. The
LTFB framework creates a set of models, where each instance of
the model is trained independently. Periodically, each model se-
lects another model to pair with, synchronize, and then run a local
tournament against held-out datasets. The winning model is then
selected and continues training on the local dataset. This approach
provides a mechanism for parallelizing the exploration of the initial
state space as well as the state space after each tournament.

Our proposed framework leverages heterogeneity and large
memory resources per compute node of future exascale systems.
With such systems, larger models (per node) can be trained taking
advantage of both memory and accelerators. At memory level, node-
local NVRAM allow us to explore techniques for caching held-out
datasets for periodically evaluating model performance or indepen-
dently training instances of a model. Experimental evaluations of
the LTFB framework on two popular image classi�cation bench-
mark: CIFAR10 [18] and ImageNet [19], show signi�cant speed up
compared to the sequential baseline.

Contribution.We summarize the key contributions of our work
as follows:
• Present a new multi-level tournament voting parallel training

algorithm that uses scalable peer to peer communication.
• Our framework streamlines hyper parameter exploration by al-

lowing diversity in each independently trained model, and mini-
mizing the time spent training with suboptimal parameters.

• Demonstration of feasibility of the new approach on image clas-
si�cation tasks using HPC clusters.
Outline The rest of the paper is organized as follows. In Sec-

tion 2, we provide a background to deep learning. In Sections 3, we
discuss in details our proposed framework for parallel large-scale
deep learning. We focus on problem de�nition, experimental setup,
and experimental results in Section 4. We present related work
in large-scale deep learning in Section 5. Finally, we conclude the
paper in Section 6.

2 BACKGROUND AND PRELIMINARIES
In this section we provide some background and preliminaries
discussion on the subject of deep learning and exascale system
architecture: two research areas of relevance to this paper.

2.1 Deep Learning
In broad terms, deep learning training algorithm can be summa-
rized in two steps; forward propagation (forwardprop) and back
propagation (backprop). Training a neural network involves mul-
tiple passes on the data in both forward and backward directions
until a desire objective is achieved. In forward propagation, the
training algorithm makes a forward pass of the neural network to
make inference or extract underlying structure of the input data.
This is typically a series of transformation implemented as ma-
trix multiplication (and similar linear algebra) across layers in the
network.

The back propagation phase involves calculating error loss (us-
ing a de�ned objective function) and applying an update to the
neural network model parameters. Commonly used algorithm for
the back propagation phase is the stochastic gradient descent (SGD)

optimization algorithm. SGD algorithms (a variant shown in Algo-
rithm 1 [2]) are inherently sequential and constitute major bottle-
neck to e�cient parallelization of deep learning algorithm. Several
research e�orts have focused on how to deal with this bottleneck.

Algorithm 1 Back propagation with SGD
Input: Initial model parameter θ , learning rate ϵ
Output: Updated model parameter θ

1: while stopping criterion not met do
2: Sample a mini-batch of m training set and target examples

x1, .., xm and y1, ..,ym
3: Compute gradient estimate: ĝ← +(1/m)5θσiL(f (xi ;θ), yi)

4: Apply update: θ ← θ − ϵ ĝ
5: end while
6: return θ

Two modes of parallelism are typically considered in paralleliz-
ing deep learning algorithms: data parallelism and model paral-
lelism. In model parallelism, the parameters (i.e. weights) of a single
model are distributed across the computing elements. Updates to
each part of the model are made by their individual computing
element, respectively. In data parallelism, each mini-batch of input
data is partitioned across the computing elements and processed
concurrently, while the model parameters (weights) are replicated.
Updates to the model are then aggregated across all samples, and
distributed to each processing element.

2.2 Next-Generation HPC Systems
US Department of Energy (DOE) has projected 2017 timeframe to
deliver its next-generation CORAL supercomputers. These systems
will exhibit the following characteristics: high-bandwidth and low
latency interconnect, high power CPUs, node-local non-volatile
memory (NVRAM), tightly-coupled GPUs, and highly-optimized
communication libraries, global �les system with high bandwidth,
and low power consumption – features that will allow HPC-enabled
deep learning [31]. When properly tuned, deep learning will bene�t
greatly from all the unique capabilities of these future systems. For
example, while hundreds (possibly thousands) of GPU accelerators
speed up parallel training, high-bandwidth interconnects e�ciently
move parameter updates, and node-local NVRAM provides low-
latency caching for massive training data sets.

3 A SCALABLE FRAMEWORK FOR
PARALLEL TRAINING OF DNN

In this section we discuss the LTFB framework, highlight its bene�ts,
and provide implementation details of the underlying algorithm.

3.1 Multi-level Tournament Voting Framework
In this work, we develop a new data parallelization framework for
scalable deep neural network training that maximize the amount
of data that is ingested by the training algorithm. This framework
also supports hierarchical parallelism, allowing parallel trainers to
exploit both data and model parallelism internally. Figure 1 shows
the high-level layout and general communication structure for the

Towards Scalable Parallel Training of Deep Neural Networks MLHPC ’17, November 12–17, 2017, Denver, CO, USA

Trainer 0 Trainer 1 Trainer 2 Trainer 3

Data

Data Partition 3

Data

Data Partition 1

Data

Data Partition 2

Data

Data Partition 0

Figure 1: LTFB Architecture: training data is partitioned among p (4) trainers. Each trainer has an instance of the model and a
partition of the training data set. For this example, each trainer shown is internally parallelized over 9 HPC nodes. Multi-color
patterns represent the trainer’s computed gradient for its weight matrices.

Figure 2: LTFB Architecture: models are exchanged between trainers. Each trainer evaluates the state of its current model and
model received from another trainer against their private holdout tournament dataset. The winning model is kept for next
round of training and loser is discarded.

LTFB framework. The main thrust of the proposed framework is to
minimize the amount of synchronization required for each step of
the training algorithm and to develop a mechanism for merging or
combining independently trained models.

The LTFB framework is described in Algorithm 2, and illustrated
Figures 1 and 2. Our multi-level tournament training algorithm cre-
ates a set of trainers, where each trainer has an instance of the model
that is trained independently. Periodically, each trainer randomly
selects another trainer to pair with, exchanges models, and then run
a local tournament against held-out datasets. The model with the
highest accuracy on the held-out dataset wins the tournament and
continues training on the local dataset. There is a communication
graph that manages the frequency of pair-wise communication and
synchronization among trainers. The communication graph is an
abstraction loosely modeled after an Erdos-Renyi graph. It controls
the amount of cross section bandwidth required as well as how
far each trainer’s model is allow to separate from the others. A
simpli�ed version of the communication graph would be random
partners or nearest partners (based on some “distance metric") or a
combination of both.

The LTFB framework exhibits two major characteristics: (1) it
reduces the frequency of synchronization by allowing each model
to process multiple mini-batches or epochs independently; (2) it
provides an approach for combining independently trained models
such that each model is able to contribute some of the knowledge
learned from their training set. The pair-wise exchange and knowl-
edge gained from model sharing is crucial for faster convergence
and faster time to accuracy. In addition, LTFB framework stream-
lines data-parallel training and hyperparameter tuning, as shown
in Sections 3.2, and 3.3.

Algorithm 2 LTFB Algorithm
Require: training dataset Dtrain , tournament dataset Dtour , vali-

dation dataset Dval , number of parallel trainers P
1: for all trainer p ∈ P par do
2: while stopping criterion not met do
3: for N epochs do
4: Train model on local dataset dptrain ∈ Dtrain
5: end for
6: Send locally trained model to partner
7: Receive locally trained model from partner
8: Evaluate both local and neighbor’s models on locally hold-

out tournament dataset dptour ∈ Dtour
9: Evaluate winning model on validation dataset Dval

10: end while
11: end for

3.2 Data Parallelism
Data parallelism is enabled by multiple trainers having indepen-
dent and parallel access to a subset of the large-scale dataset. This
provides scalability that streamlines the processing of these large
dataset across multiple computing nodes with local memory. It
enables us to deal with much larger streams of data and larger pa-
rameter sets. This advantage is especially needed in deep learning
problems with big data that does not �t on a single node.

Our framework also enables �exibility on how the data is parti-
tioned and ingested. The amount of data per trainer is a parameter
to the algorithm that could be varied by the user for speci�c goal. A
wide spectrum of data partitioning from fully partitioned training
data to fully overlap training data is possible. A fully partitioned

MLHPC ’17, November 12–17, 2017, Denver, CO, USA Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen

of the dataset among processing element allow for faster process-
ing time per epoch, while full overlap (data replication) allow for
increased accuracy within a budgeted time.

3.3 Hyperparameter Tuning
Hyperparameter tuning is a necessary but tedious task in machine
learning in general and deep learning in particular. Hyperparame-
ter tuning is typically done in a trial and error fashion. It is time
consuming and computationally intensive to �gure out what hyper-
parameters work for what network architectures. It is even more
tedious getting working hyperparameters for a given network to
generalize for a di�erent dataset.

Our framework helps streamlines this process by allowing diver-
sity in each independently trained model, and minimizing the time
spent training with sub-optimal parameters. To accelerate hyper-
parameter search, each independent model in the LTFB framework
would be instantiated with di�erent hyperparameters. When they
compete at tournaments the winning model retains its metadata
and hyperparameters, migrating them to the new trainer.

3.4 Implementation Details
Our implementation of LTFB is built around the Ca�e deep learn-
ing framework [15]. Ca�e was our choice in part because (1) its
popularity among deep learning researchers and users (2) support
for di�erent deep learning network architecture and datasets and
(3) its C++ implementation. In implementing our framework, we
con�gure an MPI wrapper to run multiple instances of Ca�e in
separate MPI processes. Each trainer in the LTFB framework is a
Ca�e network as an MPI process.

Each trainer in the LTFB framework is fed (a partition of) the
training and tournament data. At a predetermined point (multi-
ple mini batches or epoch), all trainers randomly pair up with
another trainer and exchange their currently trained models. After
exchange, each trainer compares the two models against their hold-
out tournament dataset, keeps the “better" model and discards the
“poor" model. The expectation is that the “better" model(s) as the
tournaments progress, will spread through the system and eventu-
ally emerge as the overall “winner(s)". In this respect LTFB exhibits
behavior somewhat like a genetic algorithm, with the tournament
establishing the �tness function. Unlike a genetic algorithm there
is no analogue for directly merging the two models.

Our framework supports heterogeneous Ca�e architectures. It
also leverages the richness and diversity of network architectures
and advanced optimization techniques available in Ca�e. By simply
leveraging what Ca�e provides, our framework does not require
that all trainers have the same number of and dimensions of layers.
This allows us to train many (di�erent) and diverse architecture in
parallel and have them compete with each other.

4 EXPERIMENTAL STUDY
4.1 Experimental Setup

4.1.1 Machine Architectures. All experiments were run on Sur-
face and Ray clusters at Lawrence Livermore National Labora-
tory [21]. Surface consists of 156 compute nodes. Surface nodes are
Intel (Sandy Bridge) with 16 cores and 256GB memory per node.
Each node also has 2 Tesla K40 GPUs. Ray is one of early access

SIERRA (CORAL) systems[20]. Ray consists of 54 IBM Power8+
computer nodes. Each compute node contains 20 CPU cores, 4
GPUs NVIDIA Tesla P100 (Pascal), and 256GB of memory. Ray has
1.6TB NVMe �ash storage, 1.6TB global parallel �le system and
Mellanox EDR 100Gbps In�niband network interfaces. In all of our
experiments involving GPUs, 1 GPU per trainer was used. For the
rest of discussion in this section, GPU and LTFB trainer or task are
used interchangeably.

4.1.2 Deep Network Architecture and Datasets. CIFAR10 and
ImageNet datasets were used to evaluate the LTFB framework and
compared to sequential Ca�e as baseline. CIFAR10 consists of 60,000
32×32 pixel color images with 40,000 of the images used for training,
10,000 as tournament holdout dataset and 10,000 images as test set.
The ImageNet database consist of 1.2 million 256 × 256 pixel color
training images, 64,000 tournament holdout dataset, and 50,000
validation (test) images. The deep learning task is to classify the
object in each image to the 10 and 1000 classes for CIFAR10 and
ImageNet test label respectively.

We leverage existing deep learning network architectures in
Ca�e without modi�cation for the supervised classi�cation tasks.
The network architecture for the CIFAR10 problem was three convo-
lution layers interspersed with RELU activations and pooling layers
and then followed by two fully connected layers and a softmax
layer. The GoogleNet [30] architecture was used for the ImageNet
experiment. For all the experiments, the same hyper parameters
(learning rate, optimizer, convolutional �lter size etc) were used
both for LTFB and sequential Ca�e. These parameters are as set in
the original Ca�e implementation [15] for each benchmark.

4.2 Experimental Results
Our experiments were broadly divided into small scale and large
scale experiments depending on the data size. CIFAR10 and Ima-
geNet dataset are considered small and large scale respectively.

4.2.1 CIFAR10: Small Scale Experiments. Our �rst set of experi-
ments were run on Surface cluster using the CIFAR10 dataset, and
a fully partitioned data distribution. This set of experiments gave
us initial empirical understanding as to the working of LTFB frame-
work and its performance in comparison to the sequential Ca�e
baseline.

Figure 3 shows performance of LTFB and Ca�e measured as
number of iterations to accuracy. The result shows that LTFB out-
performs Ca�e in time to accuracy by a 3 to 4 points higher accuracy.

Figures 4 and 5 provide more insight to understand why LTFB
may be better (higher accuracy) than the sequential algorithm.
The underlying explanation for the better performance is that of
knowledge transfer, strength, and diversity. LTFB algorithm exhibits
these three attributes leading to better performance in comparison
to sequential algorithm.

Figure 4 shows that without model exchange or knowledge trans-
fer, LTFB will perform poorly and learn less than the sequential
algorithm, when training with a fully partitioned data set. LTFB
framework bene�ts from exchanging model periodically through
tournament voting. Figure 5 is a testament to the strength and diver-
sity attribute of LTFB. LTFB by design inherently favors stronger or
better models. The �gure shows LTFB is suboptimal if the trainers

Towards Scalable Parallel Training of Deep Neural Networks MLHPC ’17, November 12–17, 2017, Denver, CO, USA

were to exchange models without tournament (that is to pick a
winning model blindly or at random). The �gure also show that
for a four-way trainer, running di�erent sequential algorithm four
times with four di�erent seeds (as constituted in a four-way parallel
LTFB) will not achieve the same result as would have with LTFB.

 0.6

 0.65

 0.7

 0.75

 0.8

 20000 40000 60000 80000 100000

T
e

s
t

a
c
c
u

ra
c
y

Training iterations

CIFAR10 - Test Accuracy vs Training Iterations

LTFB
Caffe

Figure 3: Ca�e versus LTFB on CIFAR10 dataset, LTFB out-
performs Ca�e in time to accuracy by a 3 to 4 points higher
accuracy.

 0.6

 0.65

 0.7

 0.75

 0.8

 20000 40000 60000 80000 100000

T
e

s
t

a
c
c
u

ra
c
y

Training iterations

CIFAR10 - Testing Tournament Exchange vs No Exchange

LTFB (With exchange)
LTFB (No exchange)

Caffe

Figure 4: Comparing LTFB with and without model ex-
change or tournament voting. Results shows that knowl-
edge sharing from tournament voting is critical to achieving
higher accuracy.

4.2.2 ImageNet: Large Scale Experiments. As a follow up to CI-
FAR10 experiment, we set up large-scale experiments on all of
1.2 million ImageNet dataset to run on Ray. Our �rst experiments
with large ImageNet dataset explores how varying data partition
impacts iterations to accuracy. We explored three level of data par-
titioning: (1) non-overlapping partition in which the full data set is

Figure 5: Results show that LTFB is biased for strength and
diversity. We test for strength bias by picking random win-
ner instead of trainer with better model (higher accuracy).
We test for diversity bias by running Ca�e with seeds that
are set of 4 seeds used in LTFB.

wholly partitioned among the processing elements without overlap
in training data processed by each process (2) data partitioning with
some amount of overlap in training data for each process and (3)
full replication of data among processing elements. Figures 6 and 7
show the results of varying data partition for �xed 4 trainers and
16 trainers respectively. While LTFB outperforms sequential Ca�e
baseline in all scenarios, the results show that having more training
data samples outperforms a reduced data sample. Note that as data
is replicated across trainers, data augmentation techniques at each
trainer e�ectively expands the size of the data set.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000 1200 1400 1600 1800

T
e

s
t

a
c
c
u

ra
c
y

Training iterations (x1000)

GoogleNet - Varying Data Size (4 Trainers)

Caffe
LTFB-4Tasks-FullOverlap

LTFB-4Tasks-PartialOverlap
LTFB-4Tasks-NonOverlap

Figure 6: Ca�e versus LTFB on ImageNet dataset, varying
data overlap for LTFB with 4 trainers (GPUs), more data im-
prove iterations to accuracy

Given the results from varying the amount of training samples
processed by each GPU at a �xed number of GPUs or LTFB tasks,

MLHPC ’17, November 12–17, 2017, Denver, CO, USA Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen

Figure 7: Ca�e versus LTFB on ImageNet dataset, varying
data overlap for LTFB with 16 trainers (GPUs), more data
improve iterations to accuracy

we carried out set of scaling experiments with partial overlap and
fully data replication schemes. A reasonable use case for the full
data replication scaling experiment involves improving training
accuracy within a time budget by adding more GPUs and increasing
the available data augmentation. This scenario �ts the HPC Big
Data paradigm in which “in�nite stream" of data is a possibility.
Figures 8 and 9 show results of these experiments. The results show
that increased concurrency in LTFB pays o� especially at higher
accuracy levels. By adding more GPUs we increase the diversity
in the model set, thus increasing exploration of the solution space,
and amplifying the e�ective size of the data set. Moreso, by bias-
ing toward stronger models, every round of tournament voting
explores multiple paths from the strongest models. Note that miss-
ing columns for 4 and 16 tasks in Figure 9 are results not available
(could not reach the next accuracy point) within alloted time.

0

20

40

60

80

100

120

140

160

180

200

71%	Accuracy 76%	Accuracy 79%	Accuracy

x	
10
00
0

Caffe	vs	LTFB	(Partial	Overlap	Data)	Iterations	to	Accuracy

Caffe LTFB	- 4	Tasks LTFB	- 16	Tasks

Figure 8: Scaling of Ca�e versus LTFB onpartial overlapping
ImageNet dataset, improve iterations to accuracy by adding
more GPUs.

4.2.3 Hyperparameter Tuning. Previous experiments demon-
strate that increasing concurrency by adding more trainers im-
proves time and reduces iterations to a higher accuracy. Another

0

50

100

150

200

250

80% 81% 82% 83% 84% 85%

x	
10
00
0

LTFB-Scaling	(Iterations	to	Accuracy)

LTFB- 4	Tasks LTFB	- 16	Tasks LTFB	- 64	Tasks

Figure 9: Scaling of LTFB on replicated ImageNet dataset.
Increase concurrency in LTFB pays o� at higher accuracy
levels, every round of voting explores multiple paths from
strongest models.

well known technique for improving iterations to accuracy is hy-
perparameter tuning. The LTFB framework streamlines hyperpa-
rameter exploration by allowing multiple trainers and models with
di�erent hyperparameters to run concurrently and compete period-
ically to dynamically select the best hyperparameter for the current
state of the training.

We conduct an experiment on CIFAR10 dataset using the same
setup as the previously discussed experiments but varying base
learning rate among the 4 LTFB trainers. We �xed all the hyperpa-
rameter provided by Ca�e [15] for CIFAR10 image classi�cation
task, and only vary the base learning rate for each trainer. Base
learning rate of each trainer was computed as a multiplier of its
MPI Rank. The original base learning rate of sequential Ca�e was
�xed at 0.001 [15], thus the learning rate for each of four LTFB
trainer was computed as:

lr = 0.001 ∗ (MPIRank + 1)

The four LTFB trainers compete at intervals with the weak model
taking both the model and solver state of the wining model. The
experimental result is shown in Figure 10. We observed that LTFB
with varying base learning rate outperforms both sequential Ca�e
and LTFB with �xed learning rate. The result shows that LTFB
bene�ts from hyperparameter exploration to improve iterations to
accuracy.

The hyperparameter experiment on CIFAR10 dataset demon-
strate that higher accuracy could be achieved with further hyper-
parameters tuning of a given "mini-batch/learning rate pair" that is
known to work. There are other scenarios in which the users have
to explore (sometime in a trial by error fashion) what should be the
appropriate hyperparameter for a given network architecture. We
conduct a new experiment to demonstrate how the LTFB frame-
work will address this problem. A new experiment on ImageNet
was conducted to explore "unknown mini-batch/learning rate pair"
scenario. A new mini-batch size of 64 and a set of 16 base learning
rates ranging from 0.005 to 0.085 (i.e. 0.005, 0.01, 0.015,0.02,. . . ,0.085)
were chosen. Each of the 16 base learning rates was given to an

Towards Scalable Parallel Training of Deep Neural Networks MLHPC ’17, November 12–17, 2017, Denver, CO, USA

Figure 10: Ca�e versus LTFBCIFAR10 dataset with �xed and
varying learning rate

LTFB trainer, the median of the set (0.04) was given to the sequential
Ca�e (a blind or random selection for sequential Ca�e, in practice,
users will try out multiple values). What should be appropriate
base learning rate is unknown beforehand. The sequential Ca�e
model did not learn for the given mini-batch size/base learning
rate pair; 0.5% top-5 average accuracy during the allotted time of
4 epochs, whereas LTFB made substantial progress reaching 66%
top-5 accuracy within the same time period. As shown in Figure 11,
LTFB starts out with almost 50% "bad” models but then proceed to
acquire "better" models as the training and tournament exchanges
proceed. Set of trainers that start poorly (trainers with bad learning
rate) improve over time due to in�uences from stronger models.

Figure 11: Heatmap plot of hyperparameter tuning in sce-
nario with mini-batch size/learning rate mismatch. LTFB
tournament help to dynamically select the best (appropri-
ate) hyperparameter for trainers that start out with bad
learning rate.

Figure 12 is a visual representation of ancestry history of winning
models sorted and grouped by model id and color. It is a count of the
number of times each model or its descendant won the tournament

at each round. The �gure shows that lower rank trainers, that is,
trainers[0 − 4], have appropriate base learning rate resulting in
stronger models. Models produced by these trainers are are picked
up by the other trainers. trainer4 in particular appears to be the
"overall best" up to the point of evaluation, having won all of the four
tournaments and models originating from it having the best overall
validation accuracy. From Figure 11, trainer1 and trainer5 have
models with highest validation accuracies, these models originated
from trainer4 as shown in Figure 13.

Figure 12: LTFB tournament history, taken into consider-
ation the ancestry of winning model at each tournament
round. Lower rank trainers produce (directly or otherwise)
most of the winning models.

Figure 13: Partial ancestry trace ofwinningmodels. Trainers
1 and 5 winning models can be traced to trainer 4.

5 RELATEDWORK
Advances in data acquistion, algorithms and computing power have
prompted renewed interest in large-scale deep learning. It has been
said that the long training time is a key challenge at the root of

MLHPC ’17, November 12–17, 2017, Denver, CO, USA Sam Adé Jacobs, Nikoli Dryden, Roger Pearce, and Brian Van Essen

the development of new DNN architectures, and that accelerating
DNN training solutions would solve a major pain point for many
organizations with interest in deep learning [14]. However, most
of existing work in parallelizing deep learning have focused on dis-
tributed clusters and heterogeneous cloud computing environments
[1],[29],[22],[9]. Our work address the need for scaling deep learn-
ing training in HPC environment. HPC environments are unique
in the nature of computing, memory and network bandwidth re-
sources. Our work, while focusing on HPC environments, is not
bounded to it. As an algorithmic abstraction, it could extend easily
to other computing environments.

Closely related research work on large-scale data-parallel deep
learning is data parallelism with mini-batch summation coordina-
tion through centralized parameter server or reduction tree, syn-
chronously or asynchronously. Hogwild [27], Tensor�ow[1], Fire-
Ca�e [14] and their variants [5] are examples of framework that
exhibit data parallelism with mini-batch summation. Scalability and
parallelism using the mini-batch summation approach is bounded
by aggregate mini-batch size [11]. Other research e�orts found that
aggregate mini-batch size could only increase to a modest extent
until it negatively a�ects training or testing accuracy or gets less
than linear returns in terms of optimization performance [2, 11, 17].

Gradient quantization as a technique to reduce data communica-
tion in deep neural network training have been explored. Selected
work in this area include: one-bit quantization [28], threshold quan-
tization [29], and adaptive quantization [10]. We consider research
e�orts in mini-batch summation and gradient quantization as com-
plementary to the approach describe in this paper. Each model
within the LTFB framework could be trained leveraging techniques
such as mini-batch summation with multiple GPUs and/or gradient
quantization.

Researchers have also explored hyperparameter tuning and model
ensemble as training techniques for DNN. Young et.al. [32] proposed
an HPC-based framework for optimizing hyper parameters of DNN
using genetic algorithm. Unlike LTFB, the proposed technique em-
ployed the master-slave architecture. Gene selection, crossover, and
mutation are done by the single master node, while the slave nodes
evaluate the �tness functions of the hyperparameters received from
the master node. The technique showed some promising qualitative
results on CIFAR10 dataset but lacked scalability evaluation. Simi-
larly, Breuel and Shafait [4] described a simple genetic algorithm
aimed at tuning learning and network size by combining ensemble
of neural network models that are trained in parallel with di�erent
rates and network sizes. The propose technique, while similar to
our work in regards to hyperparameter tuning, lacks in-depth eval-
uation. Experimental evaluation was done on a small scale MNIST
data set. LTFB provide a uni�ed framework for large-scale DNN
training with support that extends beyond hyperparameter tuning.
Lastly, whereas LTFB replaces “weaker" models with “stronger"
models through tournament voting, some recent work have ex-
plored other ensemble techniques such as model averaging [33]
and model combination through parameter sharing and ensemble-
aware loss training [24]. LTFB could leverage some of these tech-
niques to increase diversity of ensemble models and reduce model
sizes while retaining the scalability of pair-wise tournament voting.

6 CONCLUSIONS AND FUTUREWORK
We propose LTFB as a scalable parallel training algorithm that
combines gradient-less optimizations to overcome the limitations
of gradient descent algorithms scaling up parallel training algo-
rithms to HPC class system. Preliminary scaling evaluation on
image classi�cation tasks show promising results for further ex-
ploration. Future work in this regard will include extension of our
framework to extremely large (in�nite streams of scienti�c) data
sets, typically not attempted in industrial or academic domains.
In the pursuit of this goal, we will �ne-tune LTFB framework by
exploring di�erent ways to optimize data ingestion, computation,
inter- and intra-node communication. Algorithmic �ne-tuning will
include topics such as advanced diversity in individual models and
varying the mini-batch sizes as the tournaments progress.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-700919). This work
was partially funded under ARL contract L20263 and LDRD 17-
SI-003. Experiments were performed at the Livermore Computing
facility resources.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). http://tensor�ow.org/ Software available from tensor�ow.org.

[2] Ian Goodfellow Yoshua Bengio and Aaron Courville. 2016. Deep Learning. (2016).
http://www.deeplearningbook.org MIT Press.

[3] Yoshua Bengio. 2012. Deep learning of representations for unsupervised and
transfer learning. Unsupervised and Transfer Learning Challenges in Machine
Learning 7 (2012), 19.

[4] Thomas Breuel and Faisal Shafait. 2010. AutoMLP: Simple, E�ective, Fully
Automated Learning Rate and Size Adjustment. In The LearningWorkshop. Online.
Extended Abstract.

[5] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. 2016. Revisiting
Distributed Synchronous SGD. CoRR abs/1604.00981 (2016). http://arxiv.org/abs/
1604.00981

[6] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreedhar. 2017. PowerAI
DDL. ArXiv e-prints (Aug. 2017). arXiv:cs.DC/1708.02188

[7] Dan Claudiu Ciresan, Alessandro Giusti, Luca Maria Gambardella, and Jürgen
Schmidhuber. 2013. Mitosis Detection in Breast Cancer Histology Images with
Deep Neural Networks. In Proceedings of the 14th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI).

[8] Adam Coates, Andrew Y Ng, and Honglak Lee. 2011. An analysis of single-
layer networks in unsupervised feature learning. In International conference on
arti�cial intelligence and statistics. 215–223.

[9] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in Neural Information Processing Systems.
1223–1231.

[10] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. 2016. Commu-
nication Quantization for Data-parallel Training of Deep Neural Networks. In
Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments. ACM, 8.

[11] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[12] Awni Y. Hannun, Carl Case, Jared Casper, Bryan C. Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,

http://tensorflow.org/
http://www.deeplearningbook.org
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/cs.DC/1708.02188

Towards Scalable Parallel Training of Deep Neural Networks MLHPC ’17, November 12–17, 2017, Denver, CO, USA

and Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition.
CoRR abs/1412.5567 (2014). http://arxiv.org/abs/1412.5567

[13] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Ki ngsbury. 2012. Deep Neural Networks for
Acoustic Modeling in Speech Recognition. IEEE Signal Processing Magazine 29, 6
(November 2012), 82–97.

[14] Forrest N Iandola, Khalid Ashraf, Mattthew W Moskewicz, and Kurt Keutzer.
2015. FireCa�e: Near-linear acceleration of deep neural network training on
compute clusters. arXiv preprint arXiv:1511.00175 (2015).

[15] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

[16] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale Video Classi�cation with Convolutional
Neural Networks. In CVPR.

[17] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. arXiv preprint arXiv:1609.04836 (2016).

[18] Alex Krizhevsky, Vinod Nair, and Geo�rey Hinton. [n. d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/cifar.
html

[19] Alex Krizhevsky, Ilya Sutskever, and Geo� Hinton. 2012. ImageNet Classi�cation
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25. 1097–1105.

[20] Lawrence Livermore National Laboratory. 2016. Sierra. https://asc.llnl.gov/
coral-info. (2016).

[21] Lawrence Livermore National Laboratory. 2017. Livermore Computing. https:
//hpc.llnl.gov/hardware/platforms. (2017).

[22] Quoc V. Le, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Je� Dean,
and Andrew Y. Ng. 2012. Building high-level features using large scale un-
supervised learning. In In International Conference on Machine Learning, 2012.
103.

[23] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. 2009. Convo-
lutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 609–616.

[24] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and
Dhruv Batra. 2015. Why M Heads are Better than One: Training a Diverse
Ensemble of Deep Networks. arXiv (2015). http://arxiv.org/abs/1511.06314

[25] Karl Ni, Roger Pearce, Ko� Boakye, Brian Van Essen, Damian Borth, Barry Chen,
and Eric Wang. 2015. Large-Scale Deep Learning on the YFCC100M Dataset.
arXiv preprint arXiv:1502.03409 (2015).

[26] Rajat Raina, Anand Madhavan, and Andrew Y Ng. 2009. Large-scale deep unsu-
pervised learning using graphics processors. In Proceedings of the 26th annual
international conference on machine learning. ACM, 873–880.

[27] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems. 693–701.

[28] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
DNNs.. In INTERSPEECH. 1058–1062.

[29] Nikko Strom. 2015. Scalable distributed DNN training using commodity GPU
cloud computing. In INTERSPEECH, Vol. 7. 10.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Computer Vision and Pattern Recognition
(CVPR). http://arxiv.org/abs/1409.4842

[31] Brian Van Essen, Hyojin Kim, Roger Pearce, Ko� Boakye, and Barry Chen. 2015.
LBANN: Livermore big arti�cial neural network HPC toolkit. In Proceedings of
the Workshop on Machine Learning in High-Performance Computing Environments.
ACM, 5.

[32] Steven R. Young, Derek C. Rose, Thomas P. Karnowski, Seung-Hwan Lim, and
Robert M. Patton. 2015. Optimizing Deep Learning Hyper-parameters Through
an Evolutionary Algorithm. In Proceedings of the Workshop on Machine Learning
in High-Performance Computing Environments (MLHPC ’15). ACM, New York,
NY, USA, Article 4, 5 pages. https://doi.org/10.1145/2834892.2834896

[33] Sixin Zhang, Anna Choromanska, and Yann LeCun. 2014. Deep learning with
Elastic Averaging SGD. CoRR abs/1412.6651 (2014). http://arxiv.org/abs/1412.6651

http://arxiv.org/abs/1412.5567
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://asc.llnl.gov/coral-info
https://asc.llnl.gov/coral-info
https://hpc.llnl.gov/hardware/platforms
https://hpc.llnl.gov/hardware/platforms
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1409.4842
https://doi.org/10.1145/2834892.2834896
http://arxiv.org/abs/1412.6651

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Deep Learning
	2.2 Next-Generation HPC Systems

	3 A Scalable Framework for Parallel Training of DNN
	3.1 Multi-level Tournament Voting Framework
	3.2 Data Parallelism
	3.3 Hyperparameter Tuning
	3.4 Implementation Details

	4 Experimental Study
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

