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Abstract—Distributed-memory multi-core clusters enable in-
memory processing of very large graphs with billions of nodes
and edges. Recent distributed graph analytics systems have
been built on top of MPI. However, communication in graph
applications is very irregular, and each host exchanges different
amounts of non-contiguous data with other hosts. MPI does
not support such a communication pattern well, and it has
limited ability to integrate communication with serialization,
deserialization, and graph computation tasks.

In this paper, we describe a lightweight communication run-
time called LCI that supports a large number of threads on
each host and avoids the semantic mismatches between the
requirements of graph computations and the communication
library in MPI. The implementation of LCI is informed by
lessons learnt from two baseline MPI-based implementations.
We have successfully integrated LCI with two state-of-the-art
graph analytics systems - Gemini and Abelian. LCI improves
the latency up to 3.5× for microbenchmarks compared to MPI
solutions and improves the end-to-end performance of distributed
graph algorithms by up to 2×.

Index Terms—Graph analytics, clusters, communication sys-
tems

I. INTRODUCTION

The performance of graph analytics applications on large-
scale clusters is usually limited by communication. These
applications are built using a variety of frameworks [1]–[10]
that are in turn implemented on top of TCP or MPI. MPI can
provide better performance than TCP, but it is not an ideal
communication interface for graph analytics. Indeed, applica-
tions in this domain are quite different in their behavior from
the scientific computing applications that MPI was designed
for, for the following reasons:

• Graph analytics applications are less compute-intensive than
typical scientific applications; in fact, clusters are used in
graph analytics for their large memory rather than their
computational capability. This makes it difficult to overlap
communication with computation to reduce the performance
impact of communication.

• Graphs that arise in traditional HPC applications are of-
ten uniform-degree graphs, and their total size increases
polynomially in their average diameter. In contrast, graphs
of interest in graph analytics are power-law graphs, and
their total size is exponential in the average diameter [11].

For many problems, it is necessary to use different parallel
algorithms for these two classes of graphs [12].

• Most traditional HPC applications are topology-driven in
which identical operations are performed on each node of
a graph. In contrast, efficient graph analytics algorithms
are data-driven algorithms in which computations are per-
formed only at certain active nodes in the graph. Nodes
become active in data-dependent, statically unpredictable
ways, so the patterns of control-flow and data accesses are
much more irregular [13].
Because of these factors, an efficient communication system

is even more critical for good end-to-end performance of
graph analytics applications than it is for traditional HPC
applications. In the HPC context, new Network Interface Cards
(NIC) are being developed by companies such as Mellanox and
Intel. These adapters support remote direct memory access
(RDMA) natively and provide high communication rates of
millions of messages per second. Vendors are starting to
develop new standard interfaces for working with these new
devices, such as UCX from IBM/Mellanox [14] and OFI
from Intel and other companies [15]. Vendors are also adding
features in their adapters to accelerate MPI communication.

Nevertheless, MPI semantics are not the best match to the
needs of graph analytics computations. Some MPI features,
such as its strict message ordering requirements or its support
for don’t-care receives, are known to be impediments to
high message rates, especially with many concurrent com-
munications [17]. The problem is partly due to the difficulty
of implementing fine-grained synchronization in a complex
concurrent code without slowing down the uncontested path
and partly intrinsic to the design of MPI which forces the
traversal of sequential lists [18]. While improved support
for multithreading with MPI is certainly possible [19], [20],
performance still tapers off with large thread counts. This
problem worsens when each host communicates simultane-
ously with many other hosts (resulting in many concurrent
pending receives) and when each host is running many threads.
The Intel Xeon Phi Knights Landing (KNL) has 68 cores and is
capable of running up to 272 hardware threads simultaneously.
Future systems will have larger numbers of threads.

In addition, MPI does not efficiently support receiving
messages of unknown size: one either needs to allocate buffers
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Fig. 1: Performance comparison of MPI SEND/RECV (no-
probe), MPI PROBE (probe) and LCI (queue) using an
adapted OSU latency and message rate test [16]. See Section
IV for the experimental setup.

of maximum message size or add a probing call (MPI_PROBE
or MPI_IPROBE) to find out message size. MPI also does
not provide support for message-driven scheduling of threads;
this is usually implemented by a polling agent that sits on
top of MPI, separate from the polling done by the progress
engine of MPI. Finally, MPI was designed to be used directly
by application developers, not by framework or language
implementers. A framework implementer may prefer a lower-
level interface with more control and predictable performance.

This paper studies the performance advantages that accrue
in graph analytics applications by shifting from MPI to a new
communication runtime called Lightweight Communication
Interface (LCI). LCI maps more directly to the underlying
hardware, provides more lightweight interaction with threads,
and avoids overheads from semantic features of MPI not
required for graph analytics applications. Our evaluation on
an Intel KNL cluster connected by Intel Omni-Path NICs
shows that applications run significantly faster on LCI than
on MPI, and they scale well to large thread counts per
host on LCI. We also show that LCI and its performance
is also portable to Infiniband NICs and consistently better
in comparison to three state-of-the-art MPI implementations.
Figure 1 shows the improvement with a typical latency and
message rate benchmark using three different interfaces: using
MPI_SEND/MPI_RECV (no.probe), using MPI_PROBE at
the receiving side (probe), and using LCI for sending and
receiving messages (queue). It shows that using LCI signif-
icantly reduces the overhead of the communication by up to
a factor of 3.5× in comparison to probe.

The rest of this paper is organized as follows. In Sec-

tion II, we describe the two state-of-the-art graph analytics
systems used in our study, Gemini [7] and Abelian (as yet
unpublished), which is a distributed-memory version of the
Galois system [21]. Both have similar communication patterns.
Section III describes the communication libraries based on
MPI and LCI and explains the key design choices made in each
implementation. Section IV describes experimental results
using both Abelian and Gemini. Related work is described in
Section V. We summarize the main conclusions in Section VI.

II. DISTRIBUTED-MEMORY GRAPH ANALYTICS

The Gemini and Abelian systems support vertex programs:
some of the nodes in the graph are initially active, and
applying an operator to an active node makes it inactive and
may make some of its neighbors active. An operator can
only access the labels of the active node and its immediate
neighbors. A push-style operator reads the active node’s label
and writes its neighbors’ labels, and a pull-style operator
reads its neighbors’ labels and writes the active node’s label.
Computation terminates when all nodes are quiescent.

On distributed-memory clusters, the graph is partitioned
among hosts using one of many partitioning policies. Gem-
ini only supports the edge-cut partitioning strategy whereas
Abelian supports general partitioning strategies including
edge-cuts and general vertex-cuts. A simple way to think about
these partitioning strategies is to consider a partitioning of
edges to hosts. If an edge (u, v) is assigned to a host, the host
creates proxies for nodes u and v and connects them with an
edge. Since the edges connected to a given node in the graph
may be partitioned among several hosts, it is possible for a
node to have many proxies in the partitioned graph. One of
these proxies is designated the master proxy while the rest are
designated as mirror proxies. The master proxy is responsible
for the canonical value of the vertex for which it is a proxy.

Since the proxies for a given graph node may be read and
written by different hosts, we need a synchronization strategy
to coordinate the reads and writes. One approach is to use
distributed shared-memory (DSM) [8] but the overheads of
this approach are substantial. Instead, Abelian and Gemini
use the Bulk-Synchronous Parallel (BSP) model for synchro-
nization [22]. The program is executed in rounds, and each
round consists of computation followed by communication.
During the computation phase, each host applies the operators
to active nodes in its partition. The communication phase
is used to synchronize the labels of all proxies, and it can
be composed from two patterns. The first, reduce, has all
mirror proxies communicate their values to the master proxy,
where the master proxy combines them into a canonical value.
The second, broadcast, has the master proxy communicate
the canonical value to all mirror proxies. Depending on the
partitioning policy used as well as the operator (push or pull),
reduce, broadcast, or both are necessary to synchronize the
required values.

The Abelian runtime is partition-aware. It minimizes the
communication volume by choosing reduce, broadcast, or
both, based on the partitioning policy. It also minimizes the



communication meta-data while synchronizing only the up-
dated labels, thereby further reducing communication volume.
For these reasons, we choose to demonstrate our communi-
cation runtime by using Abelian for the most part. Although
Gemini supports only edge-cut partitioning, it is the state-of-
the-art distributed graph analytics system, so we use it too in
our studies.

III. COMMUNICATION: MPI AND LCI

This section describes the way we implement communica-
tion in Abelian programs. Section III-A shows that the inter-
host communication required in each round of execution of
an Abelian program can be described abstractly as a gather-
communicate-scatter communication pattern. Sections III-B
and III-C describe how this communication pattern is imple-
mented using MPI-Probe and MPI-RMA respectively. Sec-
tion III-D describes LCI - our customized communication
layer for this pattern. The communication pattern in Gemini
is a special case of this since it supports only edge-cuts.

A. Communication in Abelian programs

As discussed in Section II, there are two communication
patterns of interest: (1) reduce from mirrors to their master,
and (2) broadcast from a master to its mirrors.

To understand how the communication pattern is imple-
mented, it is necessary to consider the in-memory representa-
tion of graphs in the Abelian system. On each host, the master
nodes are stored contiguously, followed by mirror nodes. The
data for each graph node is usually a struct with several labels
or fields and this data is stored as an array of structs (AoS).

Not all nodes are active at the same time, and not all labels
need to be communicated. Thus, the data to be communi-
cated from one host to another is not contiguous, neither
on the send side, nor on the receive side. The layouts of
communicated data in sender memory and receiver memory
are not identical. Furthermore, what data is communicated
changes at each round, and is data-dependent. Sending each
entry in an individual message is not practical, nor is it
feasible to use MPI_REDUCE. In general, each host may
need to communicate with each other host. Each send to
another host is preceded by a gather operation that stores
in a contiguous buffer the data to be sent to that host; each
receive from another host is followed by a scatter operation
that retrieves data from the contiguous receive buffer and
updates the relevant entries. The update involves copying
the data if the communication is a broadcast, or applying a
reduce operation, if the operation is a reduce. The gather and
scatter patterns may involve different sets of hosts at each
round. Thus, both cases result in a gather-communicate-scatter
pattern of communication. Note that the same communication
pattern holds for other distributed memory graph frameworks.

If a host needs to communicate values to m other hosts,
it is necessary to perform m gather operations. These gather
operations are independent and in principle can be performed
in parallel. Scatter operations can also be parallelized, taking
care to avoid races for the reduce updates.

This gather-communicate-scatter pattern is implemented in
Abelian as follows. One thread on each host is dedicated to
communication with other hosts. The other threads perform
computation during the local computation phase, but they
also participate in communication during the communication
phase; to keep the terminology simple, we refer to them
nevertheless as compute threads.

Figure 2 shows an overview of the Abelian communication
runtime on each host during one round of communication.
The compute threads perform gathers into buffers in parallel.
Completed buffers are enqueued to the send queue of the com-
munication thread. Once gathers are complete, the compute
threads switch to performing scatters in parallel to process
messages received from other hosts. The messages from other
hosts are processed in an arbitrary order as they arrive.
The dedicated communication thread interleaves sending and
receiving. It checks to see if there are buffers that need to be
sent, and if so, it pushes them out into the network. It also
polls the network for incoming messages, and enqueues them
into a receive queue to be processed by the compute threads.
To maximize throughput, no blocking operations are used.

This design is intended to reduce the overhead of commu-
nication by parallelizing gathers and scatters, and overlapping
them with communication. In particular, the communication
thread can be sending and receiving data while the compute
threads are performing gathers and scatters. This design is
also intended to minimize the latency. The compute threads
enqueue a message to a host without waiting to prepare
messages for all hosts and they dequeue messages from any
host as and when they arrive without waiting to receive it in
some order. Similarly, the dedicated thread sends and receives
messages as soon as it can, without prioritizing any host. The
performance of this communication strategy depends on how
well the network layer can handle the irregular communication
and minimize the latency.

In the next three subsections, we present three approaches
to tackle this issue: using traditional MPI two-sided commu-
nication (MPI-Probe), using MPI3 one-sided features (MPI-
RMA) and finally our low-level communication layer (LCI)
which attempts to mitigate the drawbacks of the previous two
approaches.

B. MPI-Probe communication layer

This section describes the two-sided MPI-based imple-
mentation of the Abelian communication layer. It uses an
additional buffered network layer. This is the baseline imple-
mentation against which we compare our optimized runtime.

As mentioned in Section III-A, there is a dedicated thread
for sending and receiving messages. The MPI_THREAD_-
FUNNELED mode is used, and MPI commands are only issued
from the dedicated communication thread. This is important
for performance; although MPI provides concurrent accesses
(MPI_THREAD_MULTIPLE), currently deployed implemen-
tations are known to suffer substantial performance loss when
MPI_THREAD_MULTIPLE is used [17], [19], [23].



Fig. 2: Communication in the bulk-synchronous phase in
Abelian: gather/serialization and scatter/deserialization are
done by many threads (column on the left); the communication
buffer is submitted to the communication thread for actual
communication; the two methods Enq (enqueue) and Deq
(dequeue) are non-blocking and used for issuing a buffer or
testing for incoming buffer to/from the communication thread.

A naive implementation of Abelian on top of MPI reveals
one basic problem of the MPI communication model when
non-blocking communication is used: the lack of back pressure
on producers when data is produced faster than consumed.
This is especially problematic with MPI’s eager protocol, as
it may lead to the exhaustion of MPI data buffers. The slow
consumption can occur either at the network interface due to
packet injection rate limits on many networks, resulting in
buffer exhaustion on the sending side, or at the consumer,
resulting in buffer exhaustion on the receiving side. The
lack of back pressure also increases buffer consumption at
the application level, because of the all-to-all communication
pattern. For these reasons, the communication pattern of
Abelian may cause MPI to either seg-fault or hang due to
unrecoverable errors from the network devices or from the
software implementation (we tested with MVAPICH2 and Intel
MPI).

To alleviate this problem, we added a buffered network
layer that works as follows. For sending messages (maybe
different datatypes or fields), the system buffers small items
(those less than the eager-send limit) until either the oldest
buffered message times out or the buffer size exceeds the
eager send limit. This reduces buffer consumption (data is not
copied and buffered) while capping latency. Buffering is done
via thread-safe multi-producer, single consumer queues, which
implement the Enq and Deq operations from Figure 2. The

communication thread pops from this queue and only interacts
with MPI serially, which minimizes the thread synchronization
overheads and controls the memory usage of MPI. The com-
munication thread uses MPI_ISEND for sending messages
without blocking.

For receives, MPI_IRECV cannot be used directly because
communication is irregular and dynamic (e.g., there is no prior
information about the incoming message size). Abelian makes
use of MPI_IPROBE1 with MPI wildcards to handle incoming
data. The MPI_STATUS returned by this function provides
the information to start receiving the message, such as the
size of the buffer, the source and tag of the message. Subse-
quently, a MPI_IRECV is called to continue with the pending
communication. The communication thread uses MPI_TEST
calls to ensure forward progress and reclaim buffer space as
communications, both sends and receives, are complete. All
MPI calls are non-blocking to allow multiplexing between
resources and avoid resource exhaustion.

C. MPI-RMA communication layer

This section describes the implementation of the Abelian
communication layer based on one-sided MPI. It adapts the
communication runtime shown in Figure 2 to perform MPI
Remote Memory Access (RMA) operations. The goal of the
MPI RMA implementation is to establish a lower-bound for
communication overheads since, by using MPI RMA, we
can avoid two-sided matching of send/recv and also avoid
thread synchronization between computation and communi-
cation thread. However, as we will see, this comes with a cost
of increasing the overall memory usage.

Typical MPI RMA implementations [24] are single-
threaded, store the entire graph in a RMA window, and
access the graph during computation via MPI RMA calls, thus
limiting computation efficiency and the opportunity for com-
munication aggregation. In contrast, we create RMA windows
only for receiving aggregated messages during communication
so that the computation accesses only the local graph. The
main challenge in achieving this is in determining the receive
buffer sizes since they need to be pre-allocated. As mentioned
earlier, in graph analytics application, the data communicated
in each round of communication varies widely, even between
the same pair of hosts. However, an upper bound can be
computed assuming all nodes are active. This can be higher
than the average.

For a particular host, all hosts determine the maximum
size of the message that they can receive from that host
and allocate a buffer of that size in the window collectively
(MPI_WIN_CREATE). In other words, for p hosts, there are
p shared windows, each of which have p− 1 remote buffers.
Such a set of windows is created for each datatype that is
communicated (on first communication) for each pattern of
communication (reduce and broadcast).

1We did not use MPI_IMPROBE / MPI_MRECV since all communication
is done by one thread and, in our experiments with both MVAPICH2
and IntelMPI, MPI_IMPROBE / MPI_MRECV is slower and/or hang with
various benchmarks.



Since the communication phase is bulk-synchronous in
Abelian, passive target synchronization on RMA windows is
not suitable, so we implement active target synchronization.
One way to achieve that is to use a collective synchronization
model on the windows (MPI_FENCE). However, such syn-
chronization is too restrictive since it has to wait for all RMA
operations on all hosts to complete, thereby hurting the perfor-
mance. Since our goal is to reduce the latency, we choose to
implement a generalized active target synchronization, which
allows fine-grained synchronization.

In the MPI-RMA communication layer, the main compute
thread, shown in Figure 2, which would enqueue and dequeue
send and receive buffers will instead perform RMA operations.
To send messages, a host will start an access epoch on its
RMA window (MPI_WIN_START). For each destination, a
parallel gather by all compute threads is performed. This
prepares the send buffer (source data), which is then written
using MPI_PUT to the remote memory or buffer of that
destination in the host’s window. Finally, after the MPI_PUT
is initiated for all remote destinations, the host will complete
the access epoch on its window (MPI_WIN_COMPLETE). A
host exposes its receive buffers (in different windows) at the
end of a round with calls to MPI_WIN_POST and checks for
the completion of the remote access to its receive buffers with
calls to MPI_WIN_WAIT after completing the access epoch on
its window. When the MPI_WIN_WAIT for a remote source’s
RMA window returns, the host performs a parallel scatter
to process the (local) received buffer and then posts a new
exposure epoch on the source’s window using MPI_POST.

Unlike in Figure 2, the dedicated communication thread in
the one-sided MPI communication layer does not interact with
the computation threads. However, the dedicated communica-
tion thread continuously polls the network (MPI_IPROBE) to
ensure forward progress [25] for the MPI RMA operations2.
Since both the main compute thread and the dedicated com-
munication thread are issuing MPI commands, this layer uses
MPI_THREAD_MULTIPLE.

D. LCI communication layer

In this section, we describe the LCI implementation of
the Abelian communication layer. LCI not only reduces the
latency of messages when compared to two-sided or one-sided
MPI implementations, but also dynamically manages memory
requirements, thereby reducing memory usage compared to
the one-sided MPI implementation.

We present the design of Queue, an LCI interface for sup-
porting Abelian and similar irregular communication patterns.
The goal of Queue is to avoid the short-comings of MPI
implementations described above.
• LCI avoids fatal failures due to insufficient network re-

sources. This is done by allowing the upper layer to retry the
operation on such events. The MPI standard does not require
implementations to handle resource exhaustion errors and

2Another possible option is to use the MPI asynchronous progress thread,
but it is more heavyweight and we have less control over the thread.

Algorithm 1 SEND-ENQ operation (executed by thread)

1: P : a global concurrent packet pool.
2:
3: procedure SEND-ENQ(b, s, h, t) . : buffer, size, rank,

tag
4: p = packetAlloc(P, s, h, t)
5: if p then
6: r = makeRequest(p)
7: if s is small then
8: copy(p.b← b)
9: p.type← EGR

10: lc send(p)
11: r.status← DONE
12: else
13: r.status← PENDING
14: p.src← b
15: p.type← RTS
16: lc send(p)
17: end if
18: return r
19: end if
20: return NULL
21: end procedure

in current MPI implementations the program crashes when
these happen. This problem has to be mitigated by an
additional buffered layer as discussed before.

• LCI supports multi-threading efficiently with a communica-
tion server. The interaction between the server and the com-
pute thread is limited to a single flag. This is not possible
in MPI; a MPI_TEST leads to an expensive network poll,
thus leading to additional operations for checking request
completion.

• LCI is closer to the network interface. This prevents any
buffering and duplicated functionality due to the complexity
of the MPI implementation (e.g. there is no tag-matching or
ordering enforcement in the LCI interface).

Communication in LCI involves the following two steps.
Communication Initiation: Communication is started by

obtaining resources for sending data or checking if there is
an incoming packet to process. When successful, it returns
a request handle which contains a record of the communica-
tion and the resources corresponding to the communication.
In comparison to an MPI non-blocking function (such as
MPI_ISEND), our initiation can fail if there are no available
resources (for sender) or there is no pending communication
(for receiver). However the failure is not fatal and simply
means the user should retry at a later time. The two functions
for initiation of send and receive are SEND-ENQ and RECV-
DEQ respectively.

Communication Completion: After initiation is successful,
the communication is now in progress. The progress is implicit
and typically ensured by a communication server. When the
communication is finished, a boolean flag is set. In comparison



Algorithm 2 RECV-DEQ interface (executed by thread)

1: Q: a global concurrent queue.
2: P : a global concurrent packet pool.
3:
4: procedure RECV-DEQ(∗b, ∗s, ∗h, ∗t)
5: . : pointer to buffer, size, rank, tag
6: p = dequeue(Q)
7: if !p then . Q is empty
8: return NULL
9: end if

10: r ← makeRequest(p)
11: (∗s, ∗h, ∗t)← p.header
12: ∗b← allocate(∗s)
13: if p is EGR then
14: copy(∗b← p.b)
15: r.status← DONE
16: packetFree(p)
17: else
18: p.dst← ∗b
19: r.status← PENDING
20: p.type← RTR
21: lc send(p)
22: end if
23: return r;
24: end procedure

Algorithm 3 Network progress (executed by server)

1: Q: a global concurrent queue.
2: P : a global concurrent packet pool.
3:
4: procedure NETWORK-PROGRESS
5: p← lc progress
6: if p.type is EGR or RTS then
7: enqueue(Q, p)
8: else if p.type is RTR then
9: p.type← RDMA

10: lc put(p, p.src→ p.dst)
11: else if p.type is RDMA then
12: p.r.status← DONE
13: packetFree(P, p)
14: end if
15: end procedure

to MPI functions such as MPI_TEST or MPI_WAIT, our
mechanism is more lightweight: there is no need for a function
call; the user maintains a list of requests and checks the status
flag fields.

To implement Queue, we make use of some abstractions
for interacting with the underlying network APIs. We present
here a simplified version of this list of functions:
• lc send(p): submit a command to the network which trans-

fers a limited-size packet structure (p) enclosing a header
with some information such as a rank and tag of the
destination, the type of the packet, and some data. Every

host has to maintain a fixed number of buffers for receiving
these packets.

• lc put(p, src → dst): submit a command to the network
which transfers data from a source buffer (src) to a target
buffer (dst), identified by a host and key for address
translation enclosed in the packet p.

• lc progress(): ensure progress of the communication such
as flushing outgoing data and peeking for an incoming
packet. If a packet is received, from any host, the function
returns it to the caller.

lc_send and lc_put are non-blocking and are typically
very short. They can be executed by both communication
and computation threads. lc_progress can take longer
since it typically requires draining the network driver by
executing the network progressing functions. Hence, it is
only executed by the communication thread. lc_send is
provided by most network interface APIs and is typically
used for short messages in an eager protocol. lc_put can be
implemented directly by the hardware if the network interface
supports RDMA. In particular, for psm2, the native network
API of Omni-Path, lc_put is implemented by translating
target identification to a special tag. This is convenient enough
since psm2 has a rich set of tag-matching interfaces (96
bits can be used for matching purposes). On the other hand,
for ibverbs of Infiniband devices, our implementation using
reliable connection (RC) is straightforward: both lc_send
and lc_put map directly to ibv_post_send calls using
IBV_WR_SEND and IBV_WR_RDMA_WRITE work request
respectively 3.

The pseudocode for send and receive with the Queue
interface is presented in Algorithms 1 and 2 for both eager
and rendezvous protocols (selected automatically depending
on the size of the incoming buffer). A request is a structure for
storing the ongoing communication status and ties to a packet
for flow control. The rest of the communication is done by the
communication server as presented in Algorithm 3. The basic
idea is for the communication server to progress the network
and execute appropriate callbacks for each packet type. Specif-
ically, packet types are as follows: EGR - eager packet for
short protocol which includes the data; RTS, RTR - ready-to-
send and ready-to-receive control packets respectively, which
are commonly used for the rendezvous protocol to exchange
the buffer addresses; and RDMA - packet specifically for the
lc_put operation.

The algorithms also rely on two variables P and Q which
are accessed atomically for supporting thread-safety: packe-
tAlloc/Free - to allocate/free a packet; enqueue/dequeue - to
store/retrieve incoming packets. These operations can be easily
implemented with a concurrent pool and a concurrent queue
respectively. We implemented the locality-aware packet pool
presented in [17] and the fetch-and-add based MPMC queue
presented in [26]. The size of the packet pool determines the

3RC is sufficient for our current purpose since we maintain one process per
host. One can also emulate RDMA atop other connection types like in [14],
[15].



TABLE I: Inputs and their key properties.

clueweb12 kron30 rmat28

|V | 978M 1073M 268M
|E| 42,574M 10,791M 4,295M
|E|/|V | 44 16 16
max Dout 7,447 3.2M 4M
max Din 75M 3.2M 0.3M

TABLE II: Total execution time (seconds) for Abelian at 128
hosts using the rmat28 graph.

Stampede2 Stampede1
LCI MPI-Probe MPI-RMA LCI MPI-Probe MPI-RMA

bfs 0.59 0.60 0.62 0.50 0.52 0.55
cc 0.95 1.44 1.21 1.12 1.15 1.21
pagerank 17.60 44.26 33.21 22.05 23.09 27.65
sssp 1.11 1.17 1.11 1.09 1.12 1.24
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Fig. 3: Total execution time on Stampede2: Abelian with
LCI, MPI-Probe, and MPI-RMA runtimes.
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and MPI-Probe runtimes.
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TABLE III: Cluster configurations.

Stampede2 Stampede1

NIC Omni-path Mellanox FDR
CPU KNL Xeon E5
Number of cores 68 16
Clock per core 1.4 Ghz 2.7-3.5 Ghz
Memory 96GB DDR4 32GB DDR3
L3 Cache 16 GB 20 MB
MPI impl. IntelMPI 17 MVAPICH2 2.1

TABLE IV: Total execution time (seconds) for Abelian at 128
hosts using kron30 graph with LCI and other MPI imple-
mentations on Stampede2. Timing in parentheses are window
creation time which are excluded from the other results.

bfs cc pagerank sssp

LCI 1.17 2.41 89.72 2.46
IntelMPI-Probe 1.41 2.95 174.67 2.94
MVAPICH2-Probe 1.40 2.93 177.72 2.82
OpenMPI-Probe 1.33 2.99 171.57 2.82

IntelMPI-RMA (+1.4) 1.06 2.36 87.84 1.93
MVAPICH2-RMA (+1.8) 1.14 2.29 93.53 2.13
OpenMPI-RMA (+1.2) 1.21 2.34 93.74 2.25

maximum injection rate, which is typically a small constant
times the number of hosts. The allocator can be any thread-
safe memory manager; in our case, it is Abelian’s allocator.

Due to its simple semantics, Queue can maintain a short
matching queue at all times. Unlike MPI, ordering semantics
are not required and not enforced. Instead, the SEND-ENQ
returns any pending/completed request based on the order of
the first packet arrival. We name this the first-packet policy. If
needed, the user can ensure completion ordering by draining
their pending requests before submitting more packets to
the network or by maintaining an ordered list of pending
requests and checking them in order. In particular, Abelian’s
communication thread maintains this order with respect to a
specific incoming host.

The simple first-packet policy fits naturally into Abelian’s
communication layer since incoming data within a commu-
nication phase can be processed in any order. Further, since
this is designed to match our higher layer, a thread can send
a serialized message through SEND-ENQ and use RECV-DEQ
for probing incoming messages. Abelian’s communication
layer maintains a list of incomplete requests, and can start
freeing resources (for sent requests) or deserializing incoming
data (for received requests) by simply checking the boolean-
type status of each request.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the LCI communication
layer on the Abelian and Gemini systems, we used a num-
ber of standard graph applications: breadth-first search (bfs),
connected components (cc), single-source shortest path (sssp),
and pagerank (pagerank). Table I shows the input graphs
used in the experiments along with their properties; clueweb12
is one of the largest publicly available web-crawl graphs
while rmat28 and kron30 are synthetically generated scale-
free graphs. Abelian uses an advanced vertex-cut partitioning

policy [27], whereas Gemini uses a simple blocked edge-
cut partitioning policy [7] that tries to balance the assigned
edges across hosts. Most of the experiments were done on the
Texas Advanced Computing Center’s Stampede2 KNL Cluster
(Stampede2). We also perform a subset of experiments on the
Stampede SandyBridge Cluster (Stampede1). The summary of
each cluster is shown in Table III. All code is compiled using
gcc version 7.1.0 and 4.9.3 on Stampede2 and Stampede1
respectively. In each cluster, we selected the default MPI
implementation that is available; Section IV-B2 presents some
results for other MPI implementations. We present the mean
execution time of 5 runs using one thread per core, excluding
graph construction time. All algorithms are run until conver-
gence, except for pagerank which is run up to 100 iterations.

A. MPI-based vs. LCI communication layer

Figure 3 shows the execution time of Abelian programs
with the LCI, MPI two-sided (MPI-Probe), and MPI one-
sided (MPI-RMA) communication layers. With MPI two-
sided, Abelian does not scale well due to the high overheads
of multi-threaded communication and the irregular communi-
cation patterns that MPI_PROBE does not handle well. LCI
on the other hand, is able to achieve comparable or better
performance than MPI-RMA at various settings. RMA window
creation time is excluded in MPI-RMA results, otherwise LCI
outperforms MPI-RMA in all cases. We also observe that the
improvement is more significant when the application runs
with more iterations where there are more communication
rounds like in the case of pagerank. The advantage of
LCI vs. MPI-RMA is really in the memory usage, which
is sometimes reflected in performance. At 128 hosts, LCI
achieves a geometric mean speedup of 1.34× over MPI-Probe
and 1.08× over MPI-RMA.

To determine the size of the working set of communica-
tion buffers, we instrumented the code to count the size of
allocation and deallocation of the buffers. The memory usage
or footprint of a host is the maximum size of the working
set during execution. Figure 5 shows the maximum and the
minimum memory footprints across hosts of LCI compared
to MPI-RMA (this excludes the memory used internally by
MPI and only considers the allocated memory by Abelian’s
code). The memory footprint of LCI is much smaller for all
applications on all hosts than MPI-RMA. Due to its design,
LCI can quickly recycle buffers, thus reducing memory usage
and improving locality. Maximum and minimum memory
footprints for MPI-RMA are close to each other. The memory
usage of MPI-RMA can be up to an order of magnitude higher
than that of LCI because MPI-RMA has to preallocate all
buffers with a size that is the upper-bound of memory required
for communication.

To confirm that the performance improvement comes from
the communication layer, we analyze the kron30 results
in more detail. We measured the computation time of each
iteration or round on each host. We consider the maximum
across hosts for each iteration and take the sum of those values
to report the computation time. The rest of the execution time



is the non-overlapped communication time. Figure 6 shows the
time spent in computation and non-overlapped communication
for kron30 on 128 hosts. As expected, the changes in per-
formance come from the communication component. In most
applications, LCI performs best, or comparable to MPI-RMA.
LCI outperforms MPI-Probe since it has lower communication
overhead and outperforms MPI-RMA because of the reuse of
communication buffers.

B. LCI generality

1) Other graph analytical systems: Gemini is a state-of-
the-art distributed memory graph analytical framework [7]
which relies on communication from many threads with
MPI_THREAD_MULTIPLE in a similar fashion as Abelian. In
particular, MPI_PROBE is used frequently inside a receiving
thread to receive incoming messages (traversing nodes from
different hosts and with different sizes). For this reason,
Gemini is a good candidate to test the applicability of the LCI
runtime to other frameworks. We made simple modifications
to the Gemini runtime such that each sending/receiving thread
uses LCI Queue instead of MPI. We evaluate the same
benchmarks on the same platform, with LCI and MPI two-
sided (MPI-Probe)4.

Figure 4 presents the total execution time of Gemini with
MPI-Probe and LCI. All algorithms are run until convergence.
The performance behavior (or difference) is roughly similar
to that of the Abelian system. In kron30 and rmat28
where communication overheads present a significant fraction
of the total communication, we see significant improvement
in performance by using LCI. Across all applications at 128
hosts, the geometric mean speedup of LCI over MPI-Probe in
communication is 2×, yielding an execution time speedup of
1.64×.

Abelian and Gemini are systems with different pros and
cons; comparing them is not the focus of this paper. The
communication techniques described in Section III are appli-
cable to both systems, as demonstrated. Similarly, LCI can be
used as a communication runtime plug-in to improve other
distributed graph analytical systems.

2) Other MPI implementations: One may argue that a
better MPI implementation can improve the performance,
though we believe the differences between LCI and MPI
are fundamental. To verify that via empirical results, we
ran some experiments using OpenMPI (commit f9b157)
and MVAPICH 2.3b (both are latest at the time tested and
configured with psm2) on Stampede2. The results in Table IV
show that LCI remains the winner compared to other MPI
implementations. There is no clear winner between different
MPI implementations, though IntelMPI-RMA performs best
in the majority of cases. LCI is again closest in performance
to RMA implementations, and is better if we include time for
window creation in the result.

4We did not reimplement Gemini with MPI one-sided since this requires
significant changes in order to preserve computation-communication overlap.

3) Other NICs: To show that LCI and its performance
is portable to other NICs, we ran a subset of experiments
on the Stampede1 cluster which is equiped with a Mellanox
Infiniband FDR network. We do not focus on this cluster
because it has fewer cores on each host (16 compared to
68) and is an older supercomputer. Nevertheless, the results
show a similar trend, LCI performs better in all tested cases
and closely matches the performance in the Stampede2 cluster
as shown in Table II; the exception is that MPI-RMA is
actually the slowest. We believe this is because locality of
communication is the bottleneck in this system, which has
less cache and a slower memory subsystem than Stampede2.

V. RELATED WORK

Many frameworks for distributed-memory graph analytics
have been discussed in the literature [1]–[10]. Most of these
systems use either MPI or TCP/IP as the underlying commu-
nication layer.

Several communication libraries have been developed to
provide lower-level support to parallel programming languages
and libraries. This includes ARMCI [28], an library developed
to support Global Arrays, and GASNet [29], developed to
support PGAS languages such as UPC [30]. Neither of these
libraries is designed to cope with high thread counts.

Other communication libraries based on the active message
(AM) paradigm have been proposed as appropriate for prob-
lems with irregular, dynamic communication patterns [31],
[32]. The use of AM provides great flexibility but intro-
duces an unnecessary software overhead for many simple
data-transfer patterns. Moreover, it is typically prohibited to
perform blocking or time-consuming operations on an AM
handler. They may also force the use of a CPU proxy for
communications targeting GPUs. A possible promising direc-
tion would be to upload handlers to the NIC [33] but this
raises system management issues that have plagued similar
approaches in the past.

UCX [14] and Libfabric [15] are actively under development
as generic communication layers; both provide great flexibility
but do not optimize for a specific domain. Further, our initial
investigation of these libraries does not show good perfor-
mance with threads.

VI. CONCLUSIONS

To the best of our knowledge, LCI is the first commu-
nication interface targeting graph analytics that can handle
high thread counts and leverage modern NIC capabilities. The
design of LCI is based upon the studies of a state-of-the-art
graph analytics system called Abelian, through analyzing and
evaluating the performance of two existing Abelian’s MPI-
based communication layers. To demonstrate that LCI can be
used with other graph analytics systems, we integrated it with
Gemini, another state-of-the-art graph analytics framework.
Our experiments show that LCI-based communication system
reduces communication time by a factor of up to 2× for
a collection of standard graph analytics benchmarks. LCI
requires only a few primitive network operations, allowing it



to be easily ported to other systems. We have implemented
LCI on top of ibverbs, psm2, and Libfabric, which is
sufficient for LCI to run on almost all modern platforms.

In future work, we plan to integrate LCI more closely with
the Abelian runtime to reduce the overhead of their interaction,
and overlap computation and communication more effectively.
Another direction of research is to port this system to hetero-
geneous architectures. Abelian already runs on heterogeneous
platforms consisting of multicores and GPUs [34], so it should
be possible to accomplish this with reasonable effort.
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