
Neural network based silent error detector
Chen Wang

Department of Computer Science
University of Illinois at Urbana-Champaign

chenw5@illinois.edu

Nikoli Dryden
Department of Computer Science

University of Illinois at Urbana-Champaign
dryden2@illinois.edu

Franck Cappello
MCS Division

Argonne National Laboratory
cappello@anl.gov

Marc Snir
Department of Computer Science

University of Illinois at Urbana-Champaign
snir@illinois.edu

Abstract—As we move toward exascale platforms, silent data
corruptions (SDC) are likely to occur more frequently. Such
errors can lead to incorrect results. Attempts have been made to
use generic algorithms to detect such errors. Such detectors have
demonstrated high precision and recall for detecting errors, but
only if they run immediately after an error has been injected.
In this paper, we propose a neural network detector that can
detect SDCs even multiple iterations after they were injected.
We have evaluated our detector with 6 FLASH applications and
2 Mantevo mini-apps. Experiments show that our detector can
detect more than 89% of SDCs with a false positive rate of less
than 2%.

Index Terms—silent data corruption, fault tolerance, exascale
computing

I. INTRODUCTION

In exascale HPC computations, silent soft hardware errors
can no longer be ignored as they become more frequent for
a variety of reasons: larger number of components; higher
vulnerability of smaller transistors; the cost of error detection
logic; and the possible use of sub-threshold logic, in order to
reduce energy consumption. These soft errors, if not detected,
can lead to incorrect final results [1]. While statistics on the
frequency of Silent Data Corruption (SDC) are rare and hard
to obtain, there is strong evidence that SDC has affected HPC
systems in the past [2] and experimental data to suggest the
problem will get worse [3].

A naive way to ensure a correct final result is to simply run
the same application multiple times. However, for large scale
applications, it is expensive to do so due to the huge consump-
tion of computational resources. This problem has also mo-
tivated a significant amount of research on Algorithm-Based
Fault Tolerance (ABFT), where algorithm-specific methods are
used to detect errors in intermediate data and repair them
[4]–[7]. The main disadvantage of these methods is that they
need to be developed separately for each algorithm; ABFT
methods are known only for a subset of important numerical
computations.

Transient undetected hardware errors can manifest them-
selves in multiple ways: (1) They may result in a detected
software error, such as a segmentation fault; (2) they may
stay undetected and cause a wrong answer; or, (3) they may
be “benign” and lead to an acceptable answer. The latter

is frequent with iterative numerical algorithms: Any answer
that is within an error bound off from the exact answer is
acceptable; errors in least significant bits may not propagate
above the error bound; and iterative algorithms tend to smooth
local perturbations [8]. Recent work on the use of compression
or low-precision arithmetic in iterative algorithms leverage
these phenomena [9]–[11]. Error detectors need to focus only
on the second type of errors.

Moreover, different designs have been proposed for generic
error detectors that work for a large family of iterative al-
gorithms – algorithms where values at a point are repeat-
edly updated using values at neighboring points [12]–[15].
They use prediction-based techniques such as curve fitting
or autoregressive-moving-average models and rely on the fact
that an error normally manifests itself as a large gap between
a point value and the value of neighbors or between current
and previous point value. These detectors ignore small errors
that are unlikely to lead to an incorrect answer and focus on
detecting large errors. “Small” is defined as an application spe-
cific threshold, the impact error bound, which requires prior,
expensive experimentation. More importantly, these detectors
need to be run at each iteration, which significantly increases
their overhead. Furthermore, as illustrated in Figure 1a, these
error detectors have been tested by applying them immediately
after an error is injected. However, in practice, errors can
happen at any time, as in Figure 1b. Applications may smooth
errors within an iteration, so current tests may not reflect the
effectiveness of these detectors even when they are run once
at each iteration.

The weaknesses of current methods lead us to seek error
detectors with the following properties:

• They can detect errors in an iterative algorithm many
iterations after the error occurred. For example, they
could be run just before a checkpoint is taken, to ensure
the checkpoint is correct or trigger a restart.

• They are robust with respect to the actual choice of the
impact error bound.

• They can be application-specific, but no knowledge of
the specific application is needed in order to develop the
detector.

• They are efficient and provide good coverage.



Fig. 1: The error occurs during or after one iteration.

(a) An error occurs immediately before a detector is run. This
common assumption simplifies error detection.

(b) An error occurs part-way through the computation within a
single iteration. The application may smooth the error to some
extent, making detection more difficult.

In this paper, we first study how errors persist over multiple
iterations. We then propose a neural network-based SDC
detector that satsifes the requirements above. The intuition
behind our approach is that, even as the magnitude of a
point error may decrease over successive iterations, the error
propagates to nearby mesh points. A detector that integrates
information from a neighborhood of the point where the error
occurred can identify it even after it was “smeared”.

The major contributions of this paper are summarized as
follows:

• We study and categorize the behavior of silent errors
in different HPC applications. We show that for certain
types of applications, large silent errors persist even after
hundreds of iterations, which gives us the chance to detect
them without running the detector at every iteration.

• Our approach does not rely on the impact error bound,
and the detection algorithm is local, which means mul-
tiple detectors can be run concurrently on subsets of the
data and no communication is required.

• We evaluate our algorithm with 6 FLASH applications
and 2 Mantevo mini-apps. Experiments show that our
detector achieves 89%+ recall in all applications with a
false positive rate of less than 2%.

• We also demonstrate that our detector is able to detect
errors many iterations after occurrence.

• We compare our detector to existing approaches and show
that ours performs significantly better.

The rest of the paper is organized as follows. In Section
II, we briefly review silent data corruptions along with the
impact of bit flips in floating point values. In Section III, we
present experimental results of the behavior of silent errors
in different kinds of HPC applications. Then we describe our
detection algorithm in Section IV. The evaluation is presented
in Section V. The related work is discussed in Section VI
followed by the conclusion in Section VII.

II. BACKGROUND

A. Silent data corruptions

Energetic particles from cosmic radiation can invert the state
of transistors [16], [17]. Manufacturing defects can lead to
the same effect. One consequence is that these faults produce
soft errors that can cause a silent data corruption (SDC)—i.e.,
an undetected erroneous deviation in system/application state
[18]. Some corruptions can be ignored as they are attenuated
by the algorithm, and successful convergence to a valid output
still occurs. Some will cause software exceptions and will be
detected. In other cases, they can lead to unacceptable errors
in the final result. We are interested in detecting the errors that
belong to the last category.

The impact of SDC is algorithm dependent. As an example,
a small error introduced in a heat diffusion program will be
smoothed as the algorithm iterates. However, the error may
persist if it was injected in a shock hydrodynamics application.
We will discuss more details about SDC propagation in
Section III.

Ideally, an SDC detector should have these properties:
• Low false negatives: A false negative is an SDC that was

not detected and led to a wrong result. Detecting an SDC
that does not corrupt the final result should be considered
a false positive.

• Low false positives: A false positive is an event that is
wrongly detected as an SDC. These are less critical than
false negatives, as they only affect performance (e.g. by
requiring an unnecessary restart from a checkpoint).

• Low overhead: The detector should not significantly in-
crease the application runtime and should have negligible
memory footprint.

• Ability to detect errors many cycles after its occurrence:
This is critical for the purpose of lowering overheads.

The most common error recovery mechanism in HPC is
checkpoint-restart. Checkpoint-restart works only if errors
occurring during a checkpoint interval are detected before
the next checkpoint is taken. Thus, an ideal SDC detector
should be able to run at the end of a checkpoint interval and
detect errors that occurred during this interval; its running time
should be low compared to checkpoint time.

The optimal checkpoint interval is approximately equal to√
2TfTc, where Tf is the mean time between failures (MTBF)

and Tc is checkpoint time [19]; when this interval is used,
the fraction of the total time spent on checkpoint/restart is√
2Tc/Tf . Thus, for practical systems, the checkpoint interval

will be much smaller than the MTBF, and multiple errors in
an interval will be rare. Our detectors use only data in a small
window and the probability of multiple errors within the same
window is even lower. Therefore, we focus on single error
detection.

We assume that the same code will be run many times,
for different input values. Thus, it is acceptable to train an
SDC detector offline for a particular code and use the trained
detector during actual runs of that code. Note that, while
each SDC detector is application-specific, our methodology for



TABLE I: IEEE 754 floating point layout

Sign Exponent Fraction
Single precision 1[31] 8[30-23] 23[22-00]
Double precision 1[63] 11[62-52] 52[51-00]

TABLE II: The impact of bit flips in different locations on the
value 1.0 in single-precision floating point.

Flipped bit Value Deviation
- 1.0 0

31 -1.0 2
30 Infinity Infinity
29 5.421011E-20 ≈ 1
27 1.5258789E-5 0.99998474121
25 0.0625 0.9375
22 1.5 0.5
20 1.25 0.25
18 1.03125 0.03125
10 1.0004883 4.883e-4
5 1.0000038 3.8e-6
0 1.0000001 1e-7

creating the detector is application-independent. We therefore
pay a one-time cost for training a detector for an application,
which will be amortized over many runs of the application.
In particular, since many of the applications most concerned
with SDCs are used for large, long-running production runs,
this cost should be minor.

B. Bit flips in floating point

IEEE Standard 754 [20] floating point is the most common
representation today for real numbers on computers. IEEE
floating point numbers have three basic components: the sign,
the exponent, and the mantissa. The mantissa is composed of
the fraction and an implicit leading digit. The exponent base
(2) is implicit and need not be stored.

Table I shows the layout for single (32-bit) and double
(64-bit) precision floating-point values. The table shows the
number of bits for each field (bit ranges are in square brackets,
00 is the least-significant bit). Compared to the exponent, a
bit flip in the mantissa introduces a relatively small change
compared to the original value. Table II shows an example
of how a single precision floating point (1.0) changes with
different bit flips. In general, we could say that flips occurring
in higher bits do more damage than flips in lower bits.

In this paper, we only consider the case of one bit-flip at
a time. We hypothesize that more bit-flips could be no harder
to detect since the difference introduced by multiple bit-flips
is larger than one bit-flip.

III. SDC PROPAGATION

When an error is introduced, the corruption can sometimes
be detected by the application itself due to programmatic or
algorithmic properties, e.g. a system detectable event like a
segmentation fault, or an invalid data value such as a negative
speed of sound. Those errors can cause the application to
crash and are not silent anymore. On the other hand, modern
hardware supports redundancy and techniques such as error
correcting codes (ECC) that are able to detect some soft errors

TABLE III: Error positions

App Error bit position Value changes

Sod 12 From: 0.99999999999999989
To: 0.74999999999999989

BrioWU 11 From: 1.0
To: 0.5

BlastBS 16 From: 0.91620054602679901
To: 0.93182554602679901

OrszagTang 8 From: 0.69874154473510708
To: 0.002729459159121512

and prevent them from affecting the computation state [18].
In this research, we only focus on those errors that lead to
silent corruptions that are neither detected by hardware nor
by applications.

Detection is normally more effective when errors are con-
tained and affect only part of a computation’s state, but the im-
pact and propagation of SDC are algorithm/solver dependent.
To get a better understanding of how SDC propagates in HPC
applications and how silent errors affect the final results, we
perform several experiments on a representative subset of the
applications we evaluate later (see Table VII for an overview).
Results and movies of more applications can be found on this
website1.

We set the data size to 480×480 for all applications. Except
the change of mesh sizes, the initial conditions and configura-
tions for all applications are unchanged. Each application runs
100 iterations after the error injection. We randomly flip one
bit in the double precision variable density for all applications.
Exact error positions are given in Table III along with the
corresponding value changes. The bit position is indexed from
MSB(0) to LSB(63). Because some errors (especially the ones
that only introduce a small deviation) are difficult to see,
in Figure 2 we show the difference between the error free
simulation and the corrupted simulation for all applications.

As we can see, errors tend to propagate locally as the
computation goes on. One exception is OrszagTang [21],
where the error affected much of the data. This observation
shows that detectors can typically be run locally, and do not
need to view the entire dataset. This also illustrates a simple
way to achieve concurrency in detection: We run multiple
identical detectors concurrently, each on a subset of the entire
data.

Another important observation is that for most applications
considered in this paper, especially for shock hydrodynamics
applications, errors can persist for a long time (still visible
after hundreds of iterations). This long-lasting property of SDC
shows the potential to detect errors many iterations after they
occur. Based on this observation, we are encouraged to design
a neural network detector that learns to recognize patterns of
SDC propagation.

IV. METHOD

We treat the problem of detecting SDCs as a binary classifi-
cation problem and train a convolutional neural network [22],

1http://chenw5.web.engr.illinois.edu/flash.html



(a) Sod. 2 iterations after the
error injection

(b) Sod. 10 iterations after the
error injection

(c) Sod. 50 iterations after the
error injection

(d) Sod. 100 iterations after the
error injection

(e) BrioWu. 2 iterations after the
error injection

(f) BrioWu. 10 iterations after
the error injection

(g) BrioWu. 50 iterations after
the error injection

(h) BrioWu. 100 iterations after
the error injection

(i) BlastBS. 2 iterations after the
error injection

(j) BlastBS. 10 iterations after
the error injection

(k) BlastBS. 50 iterations after
the error injection

(l) BlastBS. 100 iterations after
the error injection

(m) OrszagTang. 2 iterations af-
ter the error injection

(n) OrszagTang. 10 iterations af-
ter the error injection

(o) OrszagTang. 50 iterations af-
ter the error injection

(p) OrszagTang. 100 iterations
after the error injection

Fig. 2: SDC propagation in Sod (a-d), BrioWu (e-h), Blast (i-l) and OrszagTang (m-p). Because the errors are hard to see
along with the simulation background, we show the difference between the faulty simulation and fault free simulation. Errors
are still visually detectable many iterations after injection, and typically (except OrszagTang) expand fairly slowly throughout
the domain.



[23] to solve it. The input data to the network is the numerical
state of the simulation, which we think of as an “image”
where each channel is a state variable (e.g. density, energy).
Our network is then trained to determine whether, for a given
input application state, an error is present in the data. This
is in contrast to most recent work [14], [15], which uses
curve-fitting schemes to detect anomalous data points. The
resounding success of modern convolutional neural networks
on image classification problems (e.g. [24]–[26]), combined
with the visual distinctiveness of the errors shown in Section
III, motivates our choice to use them here.

In this Section, we first discuss the error model, i.e., the
problem that our detector is designed to address. Then we
describe our neural network architecture and the training
process.

A. Error Model

We assume soft errors that lead to SDC involve bit-flips
in simulation data (e.g. density, energy), which is stored in a
floating-point format. Only a single bit-flip is considered in
most experiments, since the probability of multiple bit errors
occurring simultaneously is low, and the magnitude of the
error is dominated by the most significant corrupted bit, in
general. We ignore bit-flips that result in NaNs, since these can
be detected with standard hardware features (e.g. by enabling
floating point exceptions).

Bit flips in low-order bits result in small perturbations of
data. Experiments described in Section V-D indicate that errors
in the the last 43 bits usually result in deviations to the final
result that are within the error bound of the method used.
Therefore, we focus on detecting errors that affect only the
first 21 bits out of a 64 bits floating value.

B. Network architecture

Our neural network is a LeNet- and AlexNet-inspired [27],
[28] architecture with some modern improvements. We use
blocks of convolution, batch normalization [29], and ReLU
activations, some of which are followed by max pooling, three
fully-connected layers with dropout [30], and a sigmoid output
for prediction. In total there are eight learned layers (excluding
batch normalization). The convolutional layers learn to extract
relevant features from the simulation data, while the fully-
connected layers learn to classify the features. The pooling
layers are overlapping, and we do downsampling with strided
convolution.

We use this architecture for all our experiments, but a
separate network is trained for each application as described
below.

Due to the fully-connected layers, this architecture must
be trained on fixed-sized inputs. However, we do not want
our network to be limited to simulations of a fixed size. To
overcome this, we split the input into fixed-sized windows
(currently 60×60), and train on these data. These windows
are slightly overlapped to avoid boundary effects from convo-
lution. We treat an error as being present if the network reports
an error in any window for data from a given iteration. This

Fig. 3: System workflow: The application is used to generate
training samples that are either clean or have artificial errors
injected. A neural net is then trained on this dataset, and can
then be used to detect errors in the application.

decomposition is natural for many HPC applications, where
the data is spatially partitioned over many compute nodes, and
it would be expensive to transfer all the data to a single node to
detect errors. It is also natural in that errors in iterative codes
often propagate slowly and affect only one window. Note
that checking each window can be done independently, and
this requires no communication. If necessary, we could also
adapt standard techniques from computer vision to process
arbitrarily-sized windows with the same network, such as
fully-convolutional networks [31].

C. Training

An overview of our training workflow is given in Figure 3.
Here we describe how we collect our training data, and give
some details on the training process. Training is done once
per application, and its cost is then amortized over many runs
of the application.

1) Data: Our training dataset consists of two classes of
data: clean and corrupted. Each sample consists of the state
variables of the application, e.g. floating point vectors of
physical quantities. The choice of which variables to protect
is made by the user; however, using more variables may
enable the neural network to use correlations between different
quantities to better detect errors.

The clean data is easy to collect. We can simply run an error-
free simulation and save the needed variables at each iteration
by leveraging the application’s checkpointing mechanisms. In
order to achieve sufficient diversity in the data, we use many
random initial conditions for the simulation problem, selected
within a pre-determined realistic range of values.

The corrupted data can be collected similarly, but we
augment the application with a mechanism to inject errors.
We use this to inject errors at random iterations, into random
locations in random state variables, by flipping a random bit
within a range. We then run the application as usual and
collect the data as the simulation runs on the corrupted state.
This is typically a simple modification and imposes almost
no overhead. An alternative approach to injecting errors is to
corrupt checkpoint data and then restart the application with
it. This approach enables us to collect essentially unlimited
training data from an application and is very easy to automate.



Our testing dataset is collected similarly, except that we use
different initial conditions for this data so that training data and
testing data are distinct.

We can further subdivide our datasets based on how many
iterations have passed since an error was injected. We call
the dataset containing clean data and corrupted data from up
to k iterations after the error was injected the k-propagation
dataset. For example, the 0-propagation dataset contains clean
data and corrupted data that had an error injected at that
particular iteration (and hence has not propagated at all).
Our expectation is that training on k-propagation datasets
(k > 0) will help improve network accuracy when performing
detection many iterations after an error is introduced.

2) Training details: The network uses a binary cross-
entropy loss function and is trained with the Adam op-
timizer [32]. The learning rate is 0.00001 and the mini-
batch size is 64 samples. Training is done in the PyTorch
framework [33]. We use the same numerical precision for the
network parameters as the input data from the application. This
avoids rounding the application data in the detector, e.g. from
double precision to single or half precision. We used these
same settings, except number of epochs, for every application;
doing hyperparameter tuning for individual applications is
likely to result in improved performance over the results here.

V. EVALUATION

A. Experimental Setup

We perform our experiments on Blue Waters, a Cray super-
computer managed by the National Center for Supercomputing
Applications and supported by the National Science Founda-
tion and the University of Illinois. Each compute node has 2
AMD 6276 Interlagos CPUs and 64 GB of RAM. The neural
network is trained and evaluated on Nvidia DGX-1 at Argonne
JLSE. The DGX-1 is equipped with 8 Tesla P100 GPUs.

Table VII shows the applications we use in our evaluation
from FLASH4.4 [34] and Mantevo [35] package. We protect
state variables such as density, pressure, velocity, etc. for each
application.

B. Generating the training and testing datasets

1) Clean dataset: To gather the clean dataset, we run each
application for 1000 iterations with 10 different cases (initial
conditions). We output variables we want to protect at every
5 iterations. The mesh size is set to 480 × 480, and we split
it into 60 × 60 windows with the overlapping of 20. So, in
total, we collect 121 windows for each variable per iteration.

2) 0-propagation dataset: First, we make a copy of correct
dataset and then we inject one error per window by randomly
flipping one bit in a data point. The error positions in the
window are also randomly picked.

3) k-propagation dataset: For FLASH applications, we
utilize the checkpoint/restart mechanism to generate k-
propagation dataset. We inject errors (similarly to the 0-
propagation dataset) into many checkpoints. Then we restart
from these corrupted checkpoints and save the variables of the
following k iterations.

The testing datasets are generated in a similar manner. Note
that the testing datasets are not used in the training process.

C. Metrics

The detection sensitivity (recall) is defined as the number
of errors detected over the number of total errors. A time step
is considered a false positive if the detector reported an error
when no error is present. The false positive rate is then defined
as the number of false positive iterations over the total number
of iterations under evaluation.

D. Impact of different bit flips

As discussed in Section II, higher bit flips introduce large
deviations that can lead to wrong results. In contrast, lower
bit errors typically have only negligible impact on the final
result. To show the impact caused by different bit errors, we
perform the experiments on 6 FLASH applications with errors
injected in the middle of the computation. According to the
position of the flipped bit, we split errors into three sections,
errors in 1-20 bits (MSB), errors in 21 to 40 bits, and errors
in 41 to 63 bits (LSB). We did not include the sign bit in
this experiment because sign bit errors almost always cause
FLASH applications to crash, which means it is not a silent
error anymore. The impact of SDC is defined as following,
where vcorrect is the error free output and vcorrupted is the
corrupted output.

I =
sum(abs(vcorrect − vcorrupted))

sum(vcorrect)

Each application is run for 1000 iterations. Tables IV shows
the average impact of errors on the final result. We also show
mean square error (MSE) in brackets. The nan in BrioWu,
BlastBS and OrszagTang is because errors in 1 to 20 bits
sometimes lead to a totally abnormal output where some data
points are nan. However, unlike the sign bit error which
can cause crashes, errors of nan are not detected by the
application, i.e. they are still silent errors. It is easy to see
that for all six applications, errors in bits 0 to 20 result in a
huge difference in the final output whereas errors in 21 to 40
and 41 to 63 bits only cause small deviations in the result. Note
that the difference between the last two columns is very small
- the numbers are identical in the first few digits. Therefore,
in this paper, we focus only on flips in the top 21 bits of a
64-bit floating point value, as bit flips in the lower order bits
will be benign.

E. Comparison

We compare our method with a state-of-the-art detector,
AID [14]. There are two implementations mentioned in AID’s
paper: FP-adapted and FP-unadapted. The unadapted version
has a better recall but also an unacceptably high false positive
rate (up to 50%) for some applications. So in this section,
we compare only to the adapted implementation of AID. All
parameters for it are as specified in the paper. Note that in
AID’s paper, the authors first compute an impact error bound
for each application, then inject errors that exceed this bound.



TABLE IV: The impact of bit flips in different locations
on the final result of applications. Errors in the top bits are
significantly worse than errors in lower bits.

App bits 1-20 bits 21-40 bits 41-63

Sedov 16.62%
(59187.704)

0.36%
(5.13e-4)

0.36%
(5.13e-4)

Sod 20.43%
(0.0333)

0.05%
(7.7391e-8)

0.05%
(7.491e-8)

BrioWu nan 0.04%
(2.443e-6)

0.04%
(2.443e-6)

BlastBS nan 0.20%
(2.685e-5)

0.20%
(2.685e-5)

DMReflection 0.55%
(0.1763)

0.10%
(4.137e-3)

0.10%
(4.137e-3)

OrszagTang nan 0.20%
(4.855e-5)

0.20%
(4.855e-5)

Fig. 4: Recall comparison with AID. Our detector achieves
higher recall, outperforming AID.

First, we run both detectors at every iteration so an error can
be identified right after it was injected. Figure 4 and Figure 5
show the detection sensitivity (recall) and false positive rate
for all 8 applications. Our detector achieves more than 89%
recall in all applications with a false positive rate less than 2%.
It is clear that our detector outperforms AID both in recall and
false positive rate for all applications.

Next, we evaluate the efficiency of detecting errors with a
certain delay. As shown in Table IV, errors in higher order bits
in Sedov, Sod, BrioWu, BlastBS, and OrszagTang will lead to
wrong final results, but for BrioWu, BlastBS and OrszagTang,
errors can create nan in the data set, which makes them easy to
detect. We use only Sedov and Sod in this evaluation to avoid
that case. We run both detectors i iterations (0 ≤ i ≤ 10) after
the error injection. Figure 6 shows the recall for detecting
errors with a delay of up to 10 iterations. AID is effective
only if the detection process is performed right after the error
injection. In contrast, our detector can detect more than 80%
of errors even 10 iterations later. An interesting observation is
that the recall of our detector drops quickly in the following
several iterations after the injection but then it goes up again.
One possible explanation is a common error pattern looks like
a point surrounded by a ring as shown in Figure 2. At first it

Fig. 5: False positive comparison with AID. Our detector has
a significantly lower false positive rate.

is difficult to differentiate the error point from the ring. But
as the computation continues, the outer ring starts to expand
so the error point can be identified. This behavior is algorithm
dependent and is not always the case as we will show in the
next experiment.

As we discussed previously, the 0-propagation dataset
teaches the neural network to identify a single abnormal data
point and it is very effective when running the detector at
every iteration. However, by teaching the neural network to
recognize error patterns, the k-propagation dataset can help
improve accuracy when performing detection many iterations
after an error is introduced. We use a 4-point stencil heat
diffusion program to show how our detector performs when
trained with the k-propagation dataset. We use this custom
program because it is easy to understand and also easy to
generate the k-propagation data. Figure 7 shows the result of
running the detector 0 to 100 iterations after the error injection.
We train the neural network with 0-propagation dataset and 5-
propagation dataset separately. The accuracy of both detectors
decrease as errors propagate, and they achieve similar results
for 0 to 30 iterations after injection. However, the detector
trained on the 5-propagation dataset remains more accurate for
later iterations, and achieves a recall over 80% 100 iterations
after an error was injected.

F. Overhead

To compute the overhead of our detector, we first measure
the CPU running time of one iteration for each FLASH
application. We run each application on a single compute
node with 8 MPI ranks. The results are given in Table V.
All applications take less than 1 second per iteration. Then
we measure the detection time of our detector, which is
application independent and only relies on batch sizes, i.e.
how many windows we need to examine. In our evaluation,
the mesh size of one variable is 480 × 480, which results in
121 windows (60× 60 with 20-pixels overlap) per variable.

Figure 8 shows the detection time on CPU and GPU with
different batch sizes. As expected, performing the detection on



(a) Sedov

(b) Sod

Fig. 6: Detecting errors several iterations after they were
injected

CPU is much more time consuming than on GPU. The average
overhead is 0.11× on GPU and 29.51× on CPU. Considering
that GPUs are available in most HPC environments, one can
use the GPU to perform the detection if it exists on the same
compute node that carries out the simulation. The overhead is
small when the computation is done on CPUs and the GPUs
are used for SDC detection. Further, because our detector is
able to detect errors several iterations after errors occurrence,
we can run the detector at every few iterations to reduce the
overhead even more.

For example, performing the detection every 10 iterations
reduces the overhead to 0.011× on GPU and 2.951× on
CPU. Moreover, the detection time on both CPU and GPU
increases linearly with the batch size. Thus we anticipate that
the overhead of our detector will stay the same or decrease
as the the mesh size increases, due to the fact that HPC
applications may not always exhibit a linear scalability with
problem sizes.

We made no effort to tune the detection code, while the
simulation codes are well tuned; more tuning is likely to
further decrease the overhead. There are many ways that a

Fig. 7: Detecting errors in heat diffusion program with the
neural network trained with 0- and 5-propagation dataset

TABLE V: Runtime for a single iteration of the FLASH
applications. Our detector results in low overhead, especially
when run on GPU or only every k iterations.

App Running time for one iteration
Sedov 0.183
Sod 0.276
BrioWu 0.543
BlastBS 0.544
DMReflection 0.176
OrszagTang 0.233

production detector could be further optimized to reduce over-
head. A generic architecture was used for every application,
and we did not engage in significant architecture exploration,
which could lead to significantly more compact and efficient
networks. Similarly, specialized networks for specific applica-
tions could achieve large improvements. Many techniques exist
optimize neural networks for production deployment. This
includes tuning steps such as optimized memory layouts, algo-
rithm selection, and kernel fusion (e.g. [36]). Neural network
quantization is commonly used to optimize inference speed
and can enable the use of specialized hardware [37], [38].
Additionally, standard techniques such as model compression
and distillation (e.g. [39], [40]) can be applied to the neural
network to decrease overhead.

G. Training Time

We protect three variables for each application, leading to
three channels in the input data. Note that this is simply
due to the nature of the applications, and our method can
protect an arbitrary number of variables. As mentioned in V-B,
we run each application with 10 different initial conditions
and collect the output of 200 iterations (every fifth step out
of 1000 iterations) per run. Each iteration contributes 121
60×60 windows per variable, resulting in a total dataset size
of 1,452,000 windows (clean and corrupted) per application.
Currently this dataset is relatively small, and training with
additional data is likely to further improve the performance of
our detector.



(a) Detection time on GPU

(b) Detection time on CPU

Fig. 8: Detection time on CPU and GPU

TABLE VI: Training time for each application.

App Epochs Training time (hours)
Sedov 22 1.83
Sod 17 1.42
BrioWu 27 2.25
BlastBS 35 2.92
DMReflection 30 2.5
OrszagTang 30 2.5
CloverLeaf 28 2.33
TeaLeaf 30 2.5

The training time for each application is shown in Table VI,
where the second column shows how many epochs we train
for a specific application. Because applications solve different
problems, the number of epochs required to learn to detect
SDCs accurately varies. In every case, training time is at most
a few hours, which is short compared to a production run of a
large-scale simulation. Further, we need only train the detector
once per application, amortizing the training time over every
application run.

VI. RELATED WORK

Silent errors detection methods have been extensively stud-
ied for years. In this Section, we briefly discuss some related

work.
Specialized detection techniques [4]–[7] like Algorithm

Based Fault Tolerance (ABFT) are designed for specific
numerical algorithms. They exploit certain properties of a
targeted class of applications. These methods are usually based
on the fundamental analysis of linear algebra/matrix operations
[14] (e.g. sparse linear algebra [5]). While efficient, they are
specific to particular applications thus can not be used in
arbitrary HPC programs.

Another type of detector uses a temporal based prediction
scheme. [12]–[14], [46] propose different prediction mod-
els such as linear curve fitting, quadratic curve fitting, and
autoregressive-moving-average. These methods first make a
prediction for each data point and then compare it with the
observed value. If the difference exceeds a certain threshold
then it will be considered an error. Among the prediction
based methods, AID [14] provides the best overall results. It
combines several curve-fitting models and adaptively chooses
the best fitting model to make the prediction. It maintains at
least four recent data values for each data point that requires
protection, which means 400% extra memory usage in terms
of memory overhead. Moreover, the impact error bound, works
as a threshold, is required to be calculated for each application
beforehand.

Subasi et al. [15], [47] have proposed several spatial pre-
diction based methods. Such detectors use spatial features (i.e.
neighboring data values for each data point) to train the model
and thus introduce only a small memory overhead. However,
one major limitation of their work is that they assume multiple
bits are flipped at one time, which makes the error much easier
to detect. Further, the accuracy of such detectors is typically
worse than temporal based methods.

Detecting silent errors can be thought of as anomaly de-
tection. Deep neural networks have been used for anomaly
detection in other fields such as network traffic inspection [48],
particle physics [49], EEG waveforms [50], and videos [51].
In addition to applying deep networks to detect silent errors,
our architecture is a simple CNN and we phrase the problem
as supervised binary classification. Other work on anomaly
detection with DNNs has typically used unsupervised autoen-
coders [52], [53] or LSTM-style networks for classification
[54], [55].

VII. CONCLUSION AND FUTURE WORK

The basic hypothesis underlying our work is that, with
very high probability, an error that is large enough to corrupt
the final result is also large enough to be detected long
after it occurred. We presented in this paper evidence that
this hypothesis holds true for many iterative algorithms and
developed a neural network-based silent error detector to
detect such errors. The results are preliminary; in particular,
the decision to consider only errors in the top 21 bits is
somewhat ad-hoc. A more accurate (but also more resource
intensive) experiment would inject errors at arbitrary locations
and run the computation after error injection to completion,
in order to precisely identify benign and malign errors. More



TABLE VII: Applications from the FLASH package

Domain App Package Description

HD

Sod [41] FLASH [34] Sodshock tube for testing compressible codes ability with shocks & contact discontinuities
Sedov [42] FLASH Hydrodynamical test code involving strong shocks and non-planar symmetry
DMReflection [43] FLASH Double Mach reflection: an evolution of an unsteady planar shock on an oblique surface
CloverLeaf Mantevo [35] A hydrodynamics mini-app to solve the compressible Euler equations in 2D

MHD
BrioWu [44] FLASH Coplanar magneto-hydrodynamic counterpart of hydrodynamic Sod problem
BlastBS [45] FLASH 3D version of the MHD spherical blast wave problem
OrszagTang [21] FLASH Simple 2D problem that has become a classic test for MHD codes

DIFF TeaLeaf Mantevo A mini-app that solves the linear heat conduction equation on a using a 5 point stencil

work is needed to provide improved statistical estimates of the
frequency of false positives and false negatives, with a feasible
amount of experimentation. We have focused on iterative
computations where values at a point are updated using values
at neighboring points. We plan to consider other iterative
applications, e.g. particle codes; and detection rates after more
iterations. We expect that further performance improvements
are feasible with the use of more carefully selected neural
network architectures.

ACKNOWLEDGMENT

This research was supported by NSF SHF award num-
ber:1617488 and by the U.S. Department of Energy, DOE Of-
fice of Science under contract number DE-AC02-06CH11357.
It used compute resources at ALCF and NCSA.

We thank Dr. Anshu Dubey and Dr. Sheng Di for their
gracious help.

REFERENCES

[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[2] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectrum,
vol. 53, no. 3, pp. 30–35, March 2016.

[3] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 331–342.

[4] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz,
“Application-level fault tolerance in the orbital thermal imaging spec-
trometer,” in Dependable Computing, 2004. Proceedings. 10th IEEE
Pacific Rim International Symposium on. IEEE, 2004, pp. 43–48.

[5] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic approaches to low
overhead fault detection for sparse linear algebra,” in Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International
Conference on. IEEE, 2012, pp. 1–12.

[6] D. Tao, S. L. Song, S. Krishnamoorthy, P. Wu, X. Liang, E. Z. Zhang,
D. Kerbyson, and Z. Chen, “New-sum: A novel online abft scheme for
general iterative methods,” in Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing.
ACM, 2016, pp. 43–55.

[7] M. Turmon, R. Granat, D. S. Katz, and J. Z. Lou, “Tests and toler-
ances for high-performance software-implemehted fault detection,” IEEE
Transactions on Computers, vol. 52, no. 5, pp. 579–591, 2003.

[8] J. Calhoun, L. Olson, M. Snir, and W. D. Gropp, “Towards a more
fault resilient multigrid solver,” in Proceedings of the Symposium on
High Performance Computing. Society for Computer Simulation
International, 2015, pp. 1–8.

[9] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D. Gropp,
“Exploring the feasibility of lossy compression for pde simulations,” The
International Journal of High Performance Computing Applications, p.
1094342018762036, 2018.

[10] R. Strzodka and D. Göddeke, “Mixed precision methods for convergent
iterative schemes,” EDGE, vol. 6, pp. 23–24, 2006.

[11] H. Anzt, V. Heuveline, and B. Rocker, “Mixed precision iterative
refinement methods for linear systems: Convergence analysis based
on krylov subspace methods,” in International Workshop on Applied
Parallel Computing. Springer, 2010, pp. 237–247.

[12] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
“Lightweight silent data corruption detection based on runtime data
analysis for hpc applications,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing.
ACM, 2015, pp. 275–278.

[13] S. Di, E. Berrocal, and F. Cappello, “An efficient silent data corruption
detection method with error-feedback control and even sampling for hpc
applications,” in Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on. IEEE, 2015, pp. 271–
280.

[14] S. Di and F. Cappello, “Adaptive impact-driven detection of silent data
corruption for hpc applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 10, pp. 2809–2823, 2016.

[15] O. Subasi, S. Di, L. Bautista-Gomez, P. Balaprakash, O. Unsal,
J. Labarta, A. Cristal, and F. Cappello, “Spatial support vector regression
to detect silent errors in the exascale era,” in Cluster, Cloud and Grid
Computing (CCGrid), 2016 16th IEEE/ACM International Symposium
on. IEEE, 2016, pp. 413–424.

[16] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in
dynamic memories,” IEEE Transactions on Electron Devices, vol. 26,
no. 1, pp. 2–9, 1979.

[17] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Transactions on Device and materials reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[18] J. Calhoun, M. Snir, L. N. Olson, and W. D. Gropp, “Towards a more
complete understanding of sdc propagation,” in Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2017, pp. 131–142.

[19] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep. 1974.
[Online]. Available: http://doi.acm.org/10.1145/361147.361115

[20] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass,
D. Bhandarkar, M. Bhat, D. Bindel, S. Boldo et al., “Ieee standard for
floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, 2008.

[21] S. A. Orszag and C.-M. Tang, “Small-scale structure of two-dimensional
magnetohydrodynamic turbulence,” Journal of Fluid Mechanics, vol. 90,
no. 1, pp. 129–143, 1979.

[22] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems, 1990, pp. 396–404.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[24] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” arXiv preprint
arXiv:1707.07012, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.



[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[34] B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb,
P. MacNeice, R. Rosner, J. Truran, and H. Tufo, “Flash: An adaptive
mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes,” The Astrophysical Journal Supplement Series, vol. 131, no. 1,
p. 273, 2000.

[35] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[36] P. Team, “The road to 1.0: production ready pytorch,”
https://pytorch.org/2018/05/02/road-to-1.0.html, 2018.

[37] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in International Conference on Machine
Learning, 2016, pp. 2849–2858.

[38] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” Journal of Machine Learning
Research, vol. 18, no. 187, pp. 1–30, 2018. [Online]. Available:
http://jmlr.org/papers/v18/16-456.html

[39] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via
distillation and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[41] G. A. Sod, “A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws,” Journal of computational
physics, vol. 27, no. 1, pp. 1–31, 1978.

[42] L. I. Sedov, Similarity and dimensional methods in mechanics. CRC
press, 1993.

[43] P. Colella and P. R. Woodward, “The piecewise parabolic method
(ppm) for gas-dynamical simulations,” Journal of computational physics,
vol. 54, no. 1, pp. 174–201, 1984.

[44] M. Brio and C. C. Wu, “An upwind differencing scheme for the
equations of ideal magnetohydrodynamics,” Journal of computational
physics, vol. 75, no. 2, pp. 400–422, 1988.

[45] A. L. Zachary, A. Malagoli, and P. Colella, “A higher-order godunov
method for multidimensional ideal magnetohydrodynamics,” SIAM Jour-
nal on Scientific Computing, vol. 15, no. 2, pp. 263–284, 1994.

[46] S. Di, E. Berrocal, L. Bautista-Gomez, K. Heisey, R. Guptal, and
F. Cappello, “Toward effective detection of silent data corruptions
for hpc applications,” in Proceedings of the 28th ACM international
conference on supercomputing, SC, vol. 14, 2014.

[47] O. Subasi and S. Krishnamoorthy, “A gaussian process approach for
effective soft error detection,” in Cluster Computing (CLUSTER), 2017
IEEE International Conference on. IEEE, 2017, pp. 608–612.

[48] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network
anomaly detection with the restricted boltzmann machine,” Neurocom-
puting, vol. 122, pp. 13–23, 2013.

[49] J. H. Collins, K. Howe, and B. Nachman, “Cwola hunting: Extending
the bump hunt with machine learning,” arXiv preprint arXiv:1805.02664,
2018.

[50] D. Wulsin, J. Blanco, R. Mani, and B. Litt, “Semi-supervised anomaly
detection for eeg waveforms using deep belief nets,” in Machine Learn-
ing and Applications (ICMLA), 2010 Ninth International Conference on.
IEEE, 2010, pp. 436–441.

[51] B. R. Kiran, D. M. Thomas, and R. Parakkal, “An overview of deep
learning based methods for unsupervised and semi-supervised anomaly
detection in videos,” Journal of Imaging, vol. 4, no. 2, p. 36, 2018.

[52] M. Sölch, J. Bayer, M. Ludersdorfer, and P. van der Smagt, “Variational
inference for on-line anomaly detection in high-dimensional time series,”
arXiv preprint arXiv:1602.07109, 2016.

[53] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured energy based
models for anomaly detection,” arXiv preprint arXiv:1605.07717, 2016.

[54] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[55] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly de-
tection,” arXiv preprint arXiv:1607.00148, 2016.


